
Autolocker: Synchronization Inference for Atomic Sections∗

Bill McCloskey Feng Zhou
UC Berkeley

{billm,zf}@cs.berkeley.edu

David Gay
Intel Research

david.e.gay@intel.com

Eric Brewer
UC Berkeley and Intel Research

brewer@cs.berkeley.edu

Abstract
The movement to multi-core processors increases the need for sim-
pler, more robust parallel programming models. Atomic sections
have been widely recognized for their ease of use. They are simpler
and safer to use than manual locking and they increase modu-
larity. But existing proposals have several practical problems, in-
cluding high overhead and poor interaction with I/O. We present
pessimistic atomic sections, a fresh approach that retains many of
the advantages of optimistic atomic sections as seen in “transac-
tional memory” without sacrificing performance or compatibility.
Pessimistic atomic sections employ the locking mechanisms fa-
miliar to programmers while relieving them of most burdens of
lock-based programming, including deadlocks. Significantly, pes-
simistic atomic sections separate correctness from performance:
they allow programmers to extract more parallelism via finer-
grained locking without fear of introducing bugs. We believe this
property is crucial for exploiting multi-core processor designs.

We describe a tool, Autolocker, that automatically converts pes-
simistic atomic sections into standard lock-based code. Autolocker
relies extensively on program analysis to determine a correct lock-
ing policy free of deadlocks and race conditions. We evaluate the
expressiveness of Autolocker by modifying a 50,000 line high-
performance web server to use atomic sections while retaining
the original locking policy. We analyze Autolocker’s performance
using microbenchmarks, where Autolocker outperforms software
transactional memory by more than a factor of 3.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Languages, Algorithms

Keywords Atomic, Lock, Pessimistic

1. Introduction
Writing parallel and concurrent systems programs is a notoriously
difficult task. We propose a new programming concept called apes-
simistic atomic sectionto mitigate this problem. We call them pes-
simistic because they use locks rather than optimistic concurrency

∗ This material is based upon work supported by the National Science
Foundation under Grant No. CNS-0509544.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL ’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

struct entry { int k; int v; struct entry *next; };

mutex table_lock;
struct entry *table[SZ] protected_by(table_lock);

void put(int k, int v) {
int hashcode = ...;
struct entry *e = malloc(...);
e->k = k; e->v = v;
atomic {

e->next = table[hashcode];
table[hashcode] = e;

}
}

int get(int k) { ... }
int delete(int k) { ... }

void f(int a, int b) {
atomic { put(a, 0); put(b, delete(a)); }

}

Figure 1. A hash table implemented using atomic sections.

control. Semantically, pessimistic atomic sections are guaranteed
to execute atomically, much like database transactions. They are
translated into normal synchronization operations, so they integrate
well with existing code. Unlike manual locking, they are compos-
able, so they support a more modular style of programming. Fi-
nally, the performance of a pessimistic atomic section can be tuned
without affecting the correctness of the underlying code. This pa-
per evaluates pessimistic atomic sections via a prototype compiler
called Autolocker that uses a provably sound algorithm to translate
atomic sections written in C into traditional synchronization prim-
itives. Autolocker handles many of the tedious and error-prone de-
tails of parallel programming while retaining programmer control
over performance.

Autolocker is not a radical departure from traditional lock-based
synchronization. Every piece of data that is shared by multiple
threads must be protected by a lock. Autolocker requires program-
mers to write annotations that connect locks to shared data. Based
on these annotations, Autolocker transforms code to acquire a lock
when its associated data is accessed from within an atomic section.
In accordance with the policy of strict two-phase locking, all locks
are released at the end of atomic sections and not before (ch 17.1
of [29]). Thus, Autolocker guarantees that data remains consistent
at all times. By ensuring that locks are acquired in a well-defined
order with no cycles, it also guarantees the absence of deadlocks.1

1.1 Example

We begin the description of the Autolocker tool with an example
that illustrates its use. Figure 1 shows a hash table implementation

1 It is a well-known fact that an acyclic locking order is a sufficient condition
to guarantee deadlock freedom.

written using atomic sections. Only the put operation is shown; the
get and delete operations are written in a similar fashion.

The semantics of atomic sections mean that they appear to
execute serially, without interruption, like database transactions. In
other words, they run as if a single, global lock bracketed every
atomic section in the program so that only one could execute at
once. In fact, using a single lock would be a valid but inefficient
implementation strategy. Instead, Autolocker permits programmers
to specify a more efficient locking policy.

This hash table uses a single lock,table lock, to protect ev-
ery element. Theprotected by annotation protects all heap data
reachable from a variable (until a different annotation is reached).
Thus, every entry in the hash table is protected bytable lock.
Here is how Autolocker compiles the hash table’s put function:

void put(int k, int v) {
... non-atomic operations ...

begin_atomic();
acquire_lock(&table_lock);
e->next = table[hashcode];
table[hashcode] = e;
end_atomic();

}

Autolocker includes a library of runtime functions to imple-
mentbegin atomic, end atomic, andacquire lock. The first
two functions can be nested—they do nothing for inner atomic sec-
tions. Theacquire lock function acquires a given lock if it isn’t
held already. Locks are released when the outermostend atomic
function is called.

It might appear that Autolocker provides few benefits for such
a simple program, since a competent programmer would have little
difficulty recognizing whentable lock should be acquired in the
program above. However, Autolocker offers three key advantages:
it simplifies modular programming, it gives programmers the abil-
ity to improve performance without affecting correctness, and it
reduces the likelihood of programmer error.

Modularity. Atomic sections are composable in Autolocker. For
example, let us pretend that the hash table operations reside in
a library which is called by the client functionf in Figure 1.
Sincef performstwo hash table operations atomically, it cannot
rely on the internal locking performed by theput and delete
operation. Without Autolocker, the hash table library would have
to expose functions to lock and unlock itself. Besides violating
abstraction, these functions are very easy to misuse to create race
conditions or deadlocks. Deadlocks are particularly likely, since
the programmer is unable to order lock acquisitions consistently
without understanding how locking works within the hash table
library.

Autolocker solves these difficulties. It has knowledge of the
whole program, including the hash table implementation, so it
knows which locks must be acquired when the atomic section in
f begins. It also determines a single lock acquisition order for the
entire program, which prevents deadlocks. For modules without
source code, annotations can be placed at the module boundary to
ensure proper locking of data used by external code, although this
feature is only partially implemented.

Control. The simple locking policy shown for this hash table
performs well if there is little thread contention, but increased
contention calls for a more fine-grained locking policy. Pessimistic
atomic sections have an extremely important property: performance
can be tuned without introducing deadlocks or data races. The
most important performance trade-off of locks is between a coarse-
grained locking policy and a fine-grained one. A coarse-grained
policy uses a smaller number of locks to protect a larger part of the
heap. This policy generates few lock acquisitions (less overhead)

but may lead to heavy lock contention (more waiting for locks).
Fine-grained policies use more locks to protect data, so there is a
lower likelihood that two accesses will acquire the same lock (less
waiting). However, more locks are acquired overall, which can be
inefficient if acquiring a lock has significant overhead.

Using manual locking, changing granularity is very painful.
Each modification induces wide-ranging changes across the code-
base, since each acquisition of the affected locks must be updated.
Even worse, it is very easy to introduce deadlocks when making a
locking policy more fine-grained, since programmers often fail to
reason about changes in the order of lock acquisition.

When using Autolocker, the locking policy is determined en-
tirely by lock protection annotations. By introducing lock variables
and changing data protections, the programmer can make the lock-
ing policy more or less fine-grained. These changes do not affect
the functional part of code, which is written using atomic sections
and makes no mention of locks. Since the functionality remains the
same, Autolocker ensures that correctness is unaffected. We prove
the soundness of Autolocker’s algorithm later in the paper.

Using Autolocker, only two declarations in the hash table ex-
ample must be changed to make its locking policy fine-grained:

struct bucket {
mutex lock;
struct entry *head protected_by(lock);

};

struct bucket table[SZ];

In this version of the code, two elements with different hash codes
are protected by different locks. Despite this change, the code
that implements the hash table operations is unaffected. In our
experiments, this fine-grained hash table will perform significantly
better than the previous one under heavy contention.

Safety. Unfortunately, the new version of the code is unsafe.
Autolocker will complain that under this new locking policy the
operations performed byf may deadlock. Whenf executes, it will
first acquire the lock for whichever hash code the keya maps to.
Later, it will acquire the lock forb. There is noa priori ordering of
these two lock acquisitions with respect to each other. If two threads
execute simultaneously, one callingf(x, y) and the other calling
f(y, x), they could end in a deadly embrace. The solution is to use
multi-granularity locking, a concept borrowed from databases [14].
We describe multi-granularity locking in Section 5.4. Essentially, it
permits Autolocker to acquire a single mutual exclusion lock that
protects the entire hash table or to acquire a more fine-grained per-
bucket lock when only one bucket is accessed. This arrangement is
free of deadlocks.

Besides being a useful debugging technique, Autolocker’s abil-
ity to detect potential deadlocks is crucial to its correctness. Be-
cause the tool assumes complete responsibility for acquiring locks,
the programmer loses control over how and in what order the locks
are acquired. If Autolocker did not guarantee deadlock freedom,
the programmer would have no way of doing it herself. A bad de-
cision made by the tool would lead to a deadlock that could not
be corrected by the programmer. Thus the guarantee of deadlock
freedom is crucial to the usability of Autolocker.

1.2 Transformation Process

Converting a program that uses atomic sections to one that uses
locks is a multi-step process. We describe these steps in turn
throughout the rest of the paper. In brief, they are:

1. Merge all files into a single program. Extract outermost atomic
sections from the program, even across function boundaries.

2. Use the Autolocker type system to transform the code for each
atomic section into acomputation history(Section 3.1). A com-

putation history describes how an atomic section behaves with
respect to synchronization. In particular, it contains all the locks
that are needed by the code.

3. Process the computation histories to generate a graph of depen-
dencies among the locks that are required by a history (Sec-
tion 4.1). If the dependencies are cyclic, warn of a possible
deadlock. Otherwise, use topological sort to generate a global,
deadlock-free ordering in which to acquire locks.

4. Insert lock acquisitions where necessary, being sure to respect
the ordering that has been computed (Section 4.2). Remove any
redundant acquisitions.

There are two main contributions in this paper. The first is the
algorithmic framework described above, including the type sys-
tem to generate computation histories, the program transformation,
and the proof of correctness (Sections 2-4). The second is the Au-
tolocker tool itself, which operates on real C programs using ex-
tensions described in Section 5. In Section 6, we evaluate the suc-
cess of Autolocker on several benchmarks, including a large one
of over 50,000 lines to evaluate expressiveness and two smaller mi-
crobenchmarks to validate performance. We were generally pleased
with expressiveness, and performance was excellent (a 3x improve-
ment over software transactions in one case). We discuss related
work in Section 7 and conclude in Section 8.

2. Analysis
In this section, we look at some of the challenges facing pessimistic
atomic sections and then compare them with optimistic atomic
sections. Some of these challenges are fundamental, such as the
need for annotations, while others are limitations of the current
implementation.

2.1 Caveats

Annotations. The most obvious caveat of pessimistic atomic sec-
tions is the requirement that variables be annotated with the locks
protecting them. A number of recent examples, such as the Linux
kernel developers’ adoption of explicit user/kernel pointer annota-
tions, support the practicality of annotations.

In our experience with Autolocker, the cost of annotating code
was often offset by the savings of not explicitly acquiring locks.
Generally, we found that lock annotations “scale better” than man-
ual locking in the sense that very complex locking policies are spec-
ified much more easily using annotations. For less complex poli-
cies, using annotations usually required somewhat more effort.

A more worrisome problem of depending on user annotations is
that they might be incorrect. Users can make mistakes when they
write protection annotations, and these mistakes may lead to race
conditions. Put another way, Autolocker guarantees the absence of
racesonly with respect to the annotations it is given. Programs
compiled using Autolocker never access a memory location with-
out holding the lock protecting it, but they may race to access a lo-
cation that is shared but not annotated as such. However, we stress
that a race is only possible when a memory location has no protec-
tion annotation at all; it is not possible to create races by writing
“incorrect” annotations. In the future, we plan to eliminate races
entirely by using a conservative escape analysis (e.g., [30]) to find
shared data that lacks protection annotations.

Deadlocks. A second Autolocker caveat is that it may reject pro-
grams if it is unable to order locks in a way that guarantees freedom
from deadlocks. In AOLserver, our largest evaluation, Autolocker
rejected 4 of 82 modules. Rejections are typically due to conser-
vatism in Autolocker’s alias analysis. It is always possible to solve
the problem by replacing the offending locks with global ones,
since they are easy to analyze. We give more details on this prob-

lem in Section 6, including a proposed improvement to the analysis
that should accept the 4 previously rejected modules.

Two-phase locking. In our experiments, we found that Au-
tolocker is capable of expressing a wide range of synchronization
policies. However, it has several limitations built into it. The most
important design limitation is that Autolocker implements only
two-phase locking policies: once a lock has been released, no new
locks can be acquired. This model is very common in databases
because it guarantees serializability of transactions (the atomicity,
consistency, and isolation properties of the ACID model [29]).

Unfortunately, some policies don’t fit this model. A typical one
is tree traversal using lock pairing. When walking down a path in
a binary tree, the lock on a child node is acquired and then the
lock on the parent is released. This policy is not two-phase because
locks are acquired and released at every stage of the traversal.
Fortunately, policies like this seem to be present only in the most
complex systems like databases.

Other primitives. At the lowest level, Autolocker performs syn-
chronization using mutexes, condition variables, and reader/writer
locks (see Section 5). These primitives are sufficient, but not always
optimal. For example, it is very natural to implement queues using
semaphores. In Autolocker, a queue must instead use an alternate
implementation based on locks, such as the efficient one presented
by Michael and Scott [23], used in our experiments.

Shape information. Besides locking policy, Autolocker is also
limited in its ability to understand data structure shape, which is
a factor in deadlock detection. Consider the (somewhat artificial)
case of a binary tree in which each node is protected by a separate
mutex. The programmer would like to traverse down a path of the
tree, acquiring locks for nodes along the way without releasing
them. This example is deadlock-free because every thread will
acquire locks in a given order: the lock for a node will always be
acquired before the lock for a descendant. However, this lock order
assumes that the data structure is actually a tree. In the presence of
cycles, there is a possibility that the algorithm might deadlock.

Boyapati’s race-free, deadlock-free Java [3] supports such tree
structures, but requires a significantly more complex type system
and compile-time analysis (to ensure that trees remain trees). Cur-
rently, Autolocker uses a very conservative alias analysis to distin-
guish memory locations and ensure there are no lock-order cycles.
As a result, we may falsely detect a deadlock. In a later section,
we describe a proposal by which the user can, in some cases, dis-
ambiguate memory locations using explicit memory regions. How-
ever, we have not implemented this technique.

2.2 Comparison with Optimistic Methods

We are not the first to recognize the problems of manual locking.
The first proposal to use transactions in programming languages
was by Lomet [22]; transactions (“actions”) were implemented
in the ARGUS distributed systems programming language [21].
More recently, researchers have proposedoptimistic implementa-
tions of atomic sections, relying either on transactional memory
libraries [12, 16, 17, 19] or on experimental transactional hard-
ware [2, 24, 28]. Unlike lock-based systems, which handle data
contention via waiting, these techniques roll back and repeat an
atomic section each time contention is detected.

A central motivation for Autolocker is to explore a design that
offers the ease of atomic sections while still relying on a pes-
simistic concurrency control policy. We wondered which benefits
of transactional memory are attributable to atomic sections and
which are attributable to optimistic concurrency control. Studies
in the database community on concurrency control determined that
neither an optimistic nor a pessimistic approach is strictly better,
but led to the general belief that pessimistic locking works better

Approach Programmer effort Restrictions Performance Compatibility Guarantees
Manual acquire statements none total control — —

Optimistic atomic blocks poor I/O support contention managers
can use locks in
atomic{} no deadlocks/no races

Pessimistic
atomic blocks &
lock protections deadlock check may fail granularity control

existing locks han-
dled seamlessly

no deadlocks/no pro-
tection violations

Table 1. A comparison of manual locking, optimistic atomic sections, and pessimistic atomic sections.

Lvals q ::= x | q.f
Exprs e ::= n | q | e1 op e2

Stmts s ::= q := e | skip | s; s | s ‖ s | repeats |
assumee | begin1 | end1 | acqq2

Types τ ::= int[P] | {f1 : τ1, . . . , fn : τn} [P] | locki

P ∈ LockProtections = LockNames∪{⊥}
i ∈ LockIDs

Figure 2. The grammar of our languages. Statements marked1 are
in both in AtomicC and LockC, but their meaning differs between
the two languages. Statements marked2 are only in LockC.

for systems with limited resources [1]. Table 1 shows a breakdown
of the differences between manual synchronization and optimistic
and pessimistic concurrency control.

Perhaps the most serious drawback of optimistic atomic sec-
tions is their use of rollback. In many cases, rolling back arbitrary
program actions is not possible. A system performing network I/O
inside an atomic section cannot unsend a packet. Several solutions
to this problem based on buffering and customized compensation
actions have been proposed, but they are not general enough to han-
dle the entire range of program behavior [15]. Also, they require
compensation or buffering code for functionality that commits side
effects outside of memory. Pessimistic atomic sections, which do
not use rollback, are immune to this problem.

Optimistic atomic sections also offer little control over perfor-
mance aside from managing conflict resolution. A simplistic expla-
nation of optimistic concurrency control is that it provides a max-
imally fine-grained sharing policy at the cost of high overhead, at
least for the software-based implementations. Unfortunately, this
trade-off is poor when concurrency is low, or when atomic sections
are long or block, since longer sections increase conflicts.

Nevertheless, optimistic concurrency control can be quite desir-
able when locking offers unappealing solutions. For example, cur-
rent fine-grained locking techniques for red-black tree data struc-
tures are very complex. Autolocker fails to support them because
they are not two-phase and because they require shape information.
However, transactional memory systems handle red-black trees
easily and efficiently. Most tree operations access a small amount of
data, so the copying and rollback overhead of the optimistic scheme
is not dominant.

3. Language
We formalize Autolocker as a source-to-source transformation. The
source language, called AtomicC, implements concurrency using
atomic sections. The target language, LockC, also includes atomic
sections, but it exposes the acquisition of locks that protect shared
data. Figure 2 shows the grammar of both languages. The begin
and end statements open and close an atomic section. In LockC,
the acq (acquire) statement acquires a lock, which is released when
the outermost atomic section ends.

Threads are not modeled directly in AtomicC or LockC. Each
thread is modeled as a separate program. This simplification is
possible because the properties we are interested in—deadlock

freedom and respect for lock protections—can be checked one
thread at a time. A program is free from deadlocks as long as every
thread acquires locks in a given order (although the order must be
the same for all threads). A program respects lock protections as
long as every thread individually respects them.

Aside from synchronization, these languages are extremely sim-
ple. We require that input programs use if and while statements
for control-flow, but desugar them into an “assumee” statement
combined with a non-deterministic choice (“s1 ‖ s2”) or a non-
deterministic loop (“repeats”) to simplify the type system and
acquisition placement algorithm. The statement “ife thens1 else
s2” is equivalent to “assumee; s1 ‖ assume¬e; s2”. The statement
“while e dos” is equivalent to “repeat (assumee; s)”.

The set of values includes integers, locks, and records. Records
are mutable. They are represented as in ML, where a record value is
a reference to a heap structure that stores the field values. The type
of a record includes a lock protection on the record reference. Our
specification does not include variable declarations; it is assumed
that the set of variables and their types is known. Functions are
omitted for simplicity. In Section 5, we describe how the actual
Autolocker tool handles the full set of C features.

Types in these languages include lock protection annotations
in brackets. Every memory location (variable or record field)
has an optional lock to protect it. These annotations are like the
protected by annotations used in the introduction, although they
do not transitively extend to all reachable data. It is invalid to access
a location without first acquiring the lock that protects it. Locks are
described usinglock names, which have somewhat unusual scop-
ing rules. A lock name may refer to a global lock, but it may also
reference fields inside of records. For example, if the variablex has
type{ m : lock1, f : int[m] } [⊥], thenx.f is protected byx.m
(x itself is unprotected). Lock annotations like this are very impor-
tant, since using only global locks would force programmers to use
very coarse-grained locking policies. The simplest lock name is⊥,
which means that there is no protection.

Since records are actually references, a lock protection can be
attached to both the reference and to a field itself. If a variablex has
type{ m : lock1, f : int[m] } [L], whereL is some global lock,
then accessingx.f requires the lockL to dereferencex as well as
x.m to access the field.

In order to keep track of locks in a program, every lock type has
an identifier attached to it, denoted by a subscript. These IDs are
automatically inserted by our Autolocker implementation. During
execution, many different lock values can share the same ID.

3.1 Type System

This section presents a type system for AtomicC and LockC.
The type system has two purposes. First, it ensures that inte-
ger and record values are never mixed up by the programmer.
Second, it generatescomputation historiesthat summarize the
synchronization-related behavior of a program. For an AtomicC
program, a computation history guides how Autolocker places
locks to generate a LockC program. The computation history for a
LockC program is used to check if the program might deadlock or
access data without the proper lock. A computation history with-
out such violations is calledwell-formed. Autolocker is designed

Lvalues and Expressions(S = accumulated locks)

(VAR)
Γ(x) = τ S = ∅

Γ `lv x : τ ; S

(FIELD)
Γ `e q : {. . . , fj : τj , . . .}[P]; S

Γ `lv q.fi : τi[. . . , fj 7→ q.fj , . . .]; S

(LVALUE)
Γ `lv q : τ ; S

Γ `e q : τ ; S ∪ locks(τ)

(OP)
Γ `e e1 : int[L1]; S1

Γ `e e2 : int[L2]; S2

Γ `e e1 op e2 : int[⊥]; S1 ∪ S2

Statements(H = computation history)

(REPEAT)
Γ `s s : H

Γ `s repeats : H∗

(CHOICE)
Γ `s s1 : H1 Γ `s s2 : H2

Γ `s s1 ‖ s2 : (H1|H2)

(SEQ)
Γ `s s1 : H1 Γ `s s2 : H2

Γ `s s1; s2 : (H1 ·H2)

(ACQ)
Γ `e q : lock; ∅

Γ `s acqq :
⊕
q

(ASSN)
Γ `e q : τ1; S1 Γ `e e : τ2; S2

` τ2 ≤ τ1 S = (S1 ∪ S2)− {⊥} |S| ≤ 1

H = str(S) · str({�q2 : q2 ∈ killed(q)})
Γ `s q := e : H

(SUBTYPE1)

{f1 : τ1, . . . , fn : τn}[P1] ≤ {f1 : τ1, . . . , fn : τn}[P2]

(SUBTYPE2)

` int[P1] ≤ int[P2]

Definitions

locks(int[P]) = P

locks(locki) = ∅
locks({f1 : τ1, . . . , fn : τn}[P]) = P

str({q1, . . . , qn}) = q1 · · · qn (arbitrarily ordered)

Well-Formedness

WF(H, <, Γ) ≡ NoProtectionErrors(H) ∧ NoDeadlocks(H, <, Γ)

NoProtectionErrors(H) ≡ ∀q. L(H) ∩ L(([̂
⊕
q]∗q−) | (−⊕

q − �
q − q−)) = ∅

NoDeadlocks(H, <, Γ) ≡ ∀q, q1, q2. id(Γ, q1) ≤ id(Γ, q2) ∧ q1 6= q2 ⇒ L(H) ∩ L(([̂
⊕
q1]

∗ ⊕q2 −
⊕
q1−) | (−⊕

q − �
q − ⊕

q−)) = ∅

Figure 3. An excerpt of the type system for AtomicC and LockC. The rule for assume is not shown, but is similar to an assignment.

so that the LockC program it generates always has a well-formed
computation history (as we will prove). Thus, the type system is
useful both as an algorithmic tool for transforming AtomicC pro-
grams into LockC programs and also as a formal tool to ensure that
Autolocker works correctly.

Histories. The computation history of a statement is a regular
expression that summarizes the effect of the statement. Every path
through a statement is represented by the history. Histories give
our analysis a measure of path sensitivity while still being linear in
the program size. The alphabet of a computation history has three
symbols for every lvalueq:

⊕
q means a lock with lvalueq is acquired.
q means a value protected by lockq is accessed.
�
q means a lock with lvalueq is killed by an assignment.

A lock lvalue iskilled whenever the lock it refers to might change.
This occurs when a programmer updates a location which can alias
q. For instance, the common case of assigning to a record variable
r whose type contains a lock fieldlk would kill lock lvaluer.lk.

For notational convenience, we use a dash (−) instead of.∗

to represent an arbitrarily long string of symbols. For an example
history, consider the following program.

x, z : { L : lock, v : int[L] } [⊥]
acqx.L;
y := x.v + 1;
(x := z) ‖ skip

Let q be the lvaluex.L. This program generates the computation

history
⊕
qq(

�
q |ε).

The type system is shown in Figure 3. Notice that it has no
rules for begin and end statements. To simplify the presentation,
we assume that each atomic section is checked separately. Each
section will generate one computation history; all histories must be
well-formed in order for the full program to be well-formed. Our
implementation uses an inter-procedural analysis to extract atomic
sections from code before generating computation histories.

Locks. The typing rules for expressions and lvalues determine the
setS of lock lvalues that must be held for correct execution. When

Lock overwritten
before use of

data it protects

Data used without
acquiring lock
protecting it

q

q...
...

q

q

... no

q

q

q

q

...
...

q

q

q

...
...

no 1

2

1

Locks acquired
out of order

(when q < q)21

Different locks
of same name

acquired

(d)(b)(a)

DeadlockProtection

(c)

Figure 4. A demonstration of violations of well-formedness rules.
The formal definition of the well-formedness rules is in Figure 3.

a lock is embedded inside a structure, there is a slight complication.
Consider the following example:

x : { L : lock, v : int[L] } [⊥]
y := x.v + 1

The (FIELD) rule is used to checkx.v. It has type int[L]. However,
the typing rule substitutesx.L for L, so that the final type is
int[x.L]. We use syntactic checks on types (not shown here) to
ensure that field names never shadow each other; otherwise the
substitution could be confused.

The rules for expressions accumulate the set of required locks
in the variableS. The (LVALUE) rule uses the type int[x.L] to
determine that the lockx.L is needed to evaluate this expression.

Assignments. Assignments are handled in a mostly standard way.
We use a subtyping judgment to determine whether it is valid to
assign one type to another. This judgment forbids assigning locks
and ignores top-level lock protections since they are not changed
by the assignment.

To simplify the formal presentation of Autolocker, an assign-
ment statement is allowed to access locations protected by at most
one lock. It is easy to transform a program into one that meets
this requirement by adding unprotected temporary variables. Ad-
ditionally, we forbid a lock lvalue acquired in an acq statement to
need any other locks in order to be evaluated. The reasons for these
restrictions will become clear when we discuss acquisition place-
ment.

Tracking locks in the type system via their lvalues causes some
difficulty, since lvalues can refer to different concrete memory lo-
cations as the heap is updated. To preserve safety, the (ASSN) rule
records in the history all the lvaluesq whose value might be af-
fected by an assignment, as defined by the killed function. Al-
though this kill set may theoretically be infinite, the only elements
that matter are lock lvalues that appear elsewhere in the compu-
tation history, which will certainly be finite. The kill set can be
computed by any sound alias analysis. The Autolocker implemen-
tation uses a very conservative analysis that assumes that any two
non-global locks may be aliased.

Well-formedness. There are four well-formedness conditions.
Figure 4 (a-d) show how the well-formedness rules can be vio-
lated by a computation history. The conditions are written formally
in Figure 3.

The first two well-formedness conditions, (a) and (b), are vio-
lated if data is accessed without acquiring the lock protecting it.
The first condition is the most straightforward. A symbolq some-
where in the history means that a memory access protected by lock
q occurs at that point. If the access is not preceded by an acquisition

of the lock (represented by
⊕
q in the history), then condition (a) is

violated.

The second condition closes the loophole where a lock becomes
inaccessible (due to an assignment) between being acquired and
being needed. Consider this LockC code:

x : { L : lock, v : int[L] } [⊥]
acqx.L;
x := · · · ;
x.v := x.v + 1

Whenx.v is accessed, the lock that protects it at that point may

not be held. The history for this code is
⊕
q
�
qq, whereq = x.L.

The second well-formedness condition, (b), recognizes histories
like this one and forbids them.

The latter two conditions, (c) and (d), guarantee that the pro-
gram contains no deadlocks. They ensure that locks are acquired
in a global,a priori order that holds for the entire program. Locks
are ordered by a relation< on their IDs. In this section, we assume
the order is given up front; the next section describes a process for
computing a valid ordering. The rules, given formally in Figure 3,
assume a function id(Γ, q) has been defined that uses the typing
rules to determine the ID of a given lock lvalue. Occasionally, we
write q1 <Γ q2 to mean that the IDs ofq1 andq2 are related by<.

Condition (c) checks for deadlocks involving two distinct locks
q1 and q2 whose IDs are related by≤. It simply states that it is
illegal to acquireq2 beforeq1, since this sequence would violate
the given lock order. It does not preventq2 from being acquiring in
between two acquisitions ofq1, since the second timeq1 is acquired
is a no-op according to our semantics. However, it does prevent two
distinct lock lvalues with the same ID from being acquired, since
< is not reflexive (a reflexive relation is cyclic and might permit
deadlocks).

Condition (d) closes a loophole in (c) due to assignments to
locks, much as (b) does. Consider the following code.

x : { L : lock, v : int[L] } [⊥]
acqx.L;
x := · · · ;
acqx.L

This code in fact acquires two potentially different locks that have
the same lvalue. Condition (c) is not violated in this case, because
both acquisitions use the same lvalue. Thus, we use case (d) to
forbid situations where a lock is acquired twice with an assignment
in between that might change its value.

3.2 Soundness

Computation histories make the type system for LockC appear
slightly exotic. It is not at all obvious that the four well-formedness
conditions prevent every possible deadlock or lock protection vio-
lation. To gain assurance that the conditions work, we formulated
an operational semantics for LockC that is more conventional. In
this semantics, the state of a program includes the set of held locks.
It is illegal to access a memory location without holding the lock
protecting it, or to acquire a lock when one ordered after it is al-
ready held. We proved that programs that pass our type system will
never go wrong according to this semantics. The proof is summa-
rized in Appendix A.

4. Acquisition Placement
The main purpose of Autolocker is to place lock acquisition state-
ments throughout a program in a way that ensures race and dead-
lock freedom. The lock placement algorithm described in this sec-
tion has two stages.

1. First, it determines an order in which locks should be acquired
for a given AtomicC program. It does so by discovering data
dependencies between locks. These dependencies form a partial

order on the lock IDs. If this order is cyclic, then the program
is rejected. Otherwise, the partial order is converted to a total
order using a topological sort.

2. In the second stage, lock acquisitions are placed throughout
the program in the order inferred previously. The placement
algorithm guarantees that any lock required by a statement will
be acquired before the statement executes and that locks are
always acquired in the order determined in the first stage. The
output of this stage is a LockC program.

In the rest of this section, we describe the two phases of the al-
gorithm in greater detail. We then prove that the placement algo-
rithm always generates type-correct programs that pass the well-
formedness checks.

4.1 Order Inference

The goal of lock order inference is to determine a minimal set of
constraints on the order in which locks must be acquired. Each
new constraint increases the likelihood that the input program will
be rejected, so the set should be as small as possible. The only
constraints that are absolutely necessary are those caused by data
dependencies, such as the one in the following example:

G : lock; x : int[G]; y : { L : lock, v : int[L] }
x := x + 1;
y := · · · ;
x := y.v

The first statement in this example requires that the lockG be held.
The third statement requires thaty.L be held. It is impossible to
acquirey.L beforeG, because the value ofy is not even available
at the time whenG must be acquired. (Of course, an intelligent
tool might be able to reorder the assignment. However, in real C
programs pointers make this kind of transformation so difficult as
to be pointless.)

Intuitively, the main goal of the order inference algorithm is to
determine when one lock acquisition can be moved before another.
Data dependencies, such as the one above, make this movement
impossible. The acquisition of a lock lvalue can be moved earlier
in the program as long as it does not cross any assignments that
affect the lvalue. Thus, assignments in the program act as potential
barriers over which lock acquisitions cannot be moved.

The use of computation histories makes it fairly easy to deter-

mine a lock order. Imagine a computation historyq1
�
q2 q2. In this

history, lockq1 must be acquired beforeq2, sinceq2 is (potentially)
assigned afterq1 must already have been acquired. Even ifq2 were
acquired beforeq1, the assignment means that the lock required
later on might be different than the one that was acquired.

Thus, the first step of our algorithm uses the typing rules of the
previous section to generate computation histories for each atomic
section in a program. LetH be the set of all these histories. Then
we define the dependencies as follows:

deps0(H) = {(q1, q2) : L(H) ∩ L(−q1 −
�
q2 − q2−) 6= ∅}

These dependencies are defined in terms of lock lvalues. However,
the placement algorithm in the next section knows only about
lock IDs. We convert deps0(H) to a relation on IDs, deps(H), by
mapping lvalues to their IDs using the environmentΓ. This relation,
in turn, forms a directed graph. If this graph is cyclic, then there is
no valid ordering of lock acquisitions and the program is rejected
due to a possible deadlock. Otherwise, we use topological sort to
generate a total order< on the locks IDs. This order serves as input
to the next stage of the algorithm.

T Js2 with LK = s′2 with L′ T Js1 with L′K = s′1 with L′′

T Js1; s2 with LK = s′1; s
′
2 with L′′

T Js1 with LK = s′1 with L1 T Js2 with LK = s′2 with L2

T Js1 ‖ s2 with LK = s′1 ‖ s′2 with L1 ∪ L2

L′ = L ∪ locks(q := e)
A = {q ∈ L′ : ∃q′ ∈ locks(q := e). q ≤Γ q′}

s = acquires(A)

T Jq := e with LK = (s; q := e) with L′

Figure 5. The algorithm to add lock acquisitions to an AtomicC
program based on a given lock ordering. The acquires(·) function
returns a sequence of ordered acquire statements given a set of
locks. The locks(·) function uses the typing rules to determine all
the locks that are required for a given statement to execute.

4.2 Acquisition Placement

The lock placement algorithm inserts lock acquisitions before state-
ments that need them. Only assignments and assume statements re-
quire locks. We use the typing rules to determine the setS of locks
needed by expressions in a statement. For any statements, call this
set locks(s).

However, adding only necessary lock acquisitions may or-
der locks improperly. Imagine a program with the historyq2 q1.
Naively acquiring locks only when needed would result in the

history
⊕
q2 q2

⊕
q1 q1. However, this history is not well-formed if

q1 <Γ q2 (the locks are out of order). In that case, we must “preven-

tively” acquireq1 first, resulting in the history
⊕
q1

⊕
q2 q2

⊕
q1 q1. The

second acquisition ofq1 is unnecessary, but it can be eliminated
later as an optimization.

The algorithmT Js with LK for adding lock acquisitions to a
statements is shown in Figure 5. It takes as input the setL of locks
that may be acquired afters, used to do preventive acquisitions. It
returns an updated version of this set that includes the locks needed
by s.

The rules for sequencing and choice are unremarkable. They
simply thread theL set through the statements in a syntax-directed
manner. The rule for assignments is more interesting. In it, the set
L′ includes locks needed by the assignment as well as any other
locks acquired later on, fromL. The locks to be acquired for the
assignment are placed inA. A lock is in A if it is in L′ (i.e., if
it is needed by the assignment or by a later statement), and if it
is ≤ some lock needed by the assignment. This includes both the
locks used by the assignment as well as the locks to be acquired
preventively. A sequence of acquire statements is synthesized from
A using the acquire(·) function (definition not shown). When ap-
plied to a set of lock lvalues, it returns acquire statements ordered
according to the lock ordering.

4.3 Correctness

The transformationT should always generate a well-typed pro-
gram with a well-formed history that is semantically equivalent to
the original program. Semantic equivalence is obvious, since only
acq statements are added, and they have no observable effect on the
program aside from synchronization.

Proving that the transformed program is well typed is slightly
more difficult. We must show that every additional acq statement
is well typed. This amounts to proving that lock lvalues being
acquired do not need any other locks in order to be evaluated,
as required by the (ACQ) typing rule. However, assignment state-

ments, which result in lock acquisitions being added byT , need
at most one lock (the|S| ≤ 1 restriction). Observe that if this
lock depended on other locks, then the assignment would also re-
quire those locks. Since it doesn’t, acquire statements depend on no
locks, and so they are well typed.

Lastly, we prove thatT always generates LockC programs with
well-formed histories. It is not obvious that this is so. For example,
it is not clear that the dependencies inferred by deps0 are sufficient,
or thatT acquires the right locks at the right times. In this section,
we show whyT works. First, we need a lemma that describes the
way that histories behave under transformation.

LEMMA 1 (Histories).LetH be the computation history of a pro-
gram s, let < be the lock order inferred fors, and letH ′ be the
history of the transformed programT Js with ∅K. Then the follow-
ing properties hold.

(i) If there is a historyh′ ∈ L(H ′) such thath′ ∈ L(−q1 −
�
q2− q2−), thenq1 <Γ q2. That is, if there is a dependency in a
history inH ′, then this dependency was discovered by the order
inference algorithm.

(ii) If a history h′ = h0
⊕
q1 h1 ∈ L(H ′), thenh1 = h2 q2 h3, where

h2 contains no kills andq1 ≤Γ q2. In other words, every lock
acquisition is eventually followed by a lock use ordered after it,
and no kills occur in between.

(iii) If there is a historyh′ = h0
⊕
q h1 ∈ L(H ′), then there is

also a historyh′′ = h0
⊕
q h2 q h3 ∈ L(H ′). That is, if a

history contains a lock acquisition, then there is another (not
necessarily distinct) history that is identical to the first up to
the acquisition, but then later uses the lock that was acquired.

In brief, part (i) is true because the transformed history differs
from the original one only in acquisitions. Part (ii) is true based
on howT adds acquisitions—they are always added right before
a required lock, and only locks that are≤ some required lock are
added. Part (iii) is true becauseT adds an acquisition only if that
lock is needed some time later (although it may be needed on a
different path).

Now we use this lemma to show that the history of the trans-
formed programT Js with ∅K satisfies well-formedness properties
(a-d), and thus that the transformed program is free of deadlocks
and data races.

WF(a) — No memory access is unprotected. The algorithm above
inserts a lock acquisition for every lock needed by the original
history. Based on the (ACQ) typing rule, the acquisitions it adds do
not result in any other lock requirements, so every memory access
in the new history is covered.

WF(b) — Killed locks are never re-acquired. Consider this illus-
tration.

...

(q < q)1 2

by lemma (ii)q q q q

......

forces q < q1 2

1 1 1 1 2 1 1q q q

If condition (b) is violated, then there must be a history inH ′

like the one on the left. Then by part (ii) of the lemma, the initial
acquisition ofq1 must be followed by a use of someq2, where
q1 ≤Γ q2. But then this history (shown on the right) contains a data
dependency betweenq2 andq1. By part (i) of the history lemma,
this dependency also existed inH, so it must have been discovered
by the order inference algorithm. The algorithm would have forced
q2 <Γ q1. However, the two inequalities contradict each other, so
this can never happen.

WF(c) — Locks are acquired in order. This property is guaranteed
by T . If two locks q2 andq1 are acquired out of order, then the
earlier acquisition ofq2 must have been added whenq1 was in the
setL. But thenq1 should have been placed in theA set along with
q2. The acquires(·) function is defined to acquire locks in order.
Thus,q1 was actually acquired first, so this condition cannot be
violated.

WF(d) — Protecting locks are never killed after acquisition. As-
sume that this occurs. Then there must be a history inH ′ like the
left one below.

q

...

qq q q qby lemma (iii) q
...

violates WF(b)

However, by part (iii) of the history lemma, the final acquisition
must be followed by a use in some other history inH ′. This history
will violate well-formedness condition (b), which we have proved
will not happen.

5. Extensions
Real programs are built using a variety of features that are inex-
pressible in AtomicC. In the next few sections, we describe some
extensions we implemented that were required for Autolocker to be
useful in practice.

5.1 Condition Variables

Condition variables are common in programs that use the standard
Clibpthread library. There are two operations. A thread canwait
on a condition variable until another threadsignals the variable.
Typically, condition variables are used to wait until a predicate on
the program state becomes true. Any thread that updates a variable
that might affect the predicate must signal the condition variable.
One problem with this approach is that it is easy to forget to signal
a condition variable in every circumstance.

Autolocker treats condition variables in much the same way as
locks. A variablex may be annotated with a condition variablec.
Wheneverx is updated, Autolocker automatically signalsc. Pro-
grams using Autolocker can wait on predicates (C expressions).
Autolocker infers the condition variable associated with the predi-
cate (by examining the variables that are subexpressions) and waits
on it. The use of Autolocker eliminates errors where a variable is
updated but the corresponding condition variable is not signaled.
This provides similar functionality to Harris and Fraser’s atomic
statement guards [16]. However, Autolocker is somewhat weaker
sincelibpthread allows the programmer to wait on only one con-
dition variable at a time. Also we do not yet provide a way to choose
whether to signal one or all waiting threads.

5.2 Prelocking

AtomicC requires that every variable be explicitly annotated with
the lock that protects it. However, there are times when no single
lock protects a variable. For example, a program may contain
two hash tables, each protected by a different lock. Depending on
which path is taken, the programmer may assign a local variable
to point to one hash table or the other. Autolocker includes a
special protection annotation written$locked. A variable marked
$locked (a prelocked variable) may contain data that is protected
by any arbitrary lock as long as the lock is held throughout the
lifetime of the variable.

Autolocker is responsible for acquiring the correct lock when-
ever an assignment is made to a$locked variable, as follows. The
full type system includes a subsumption rule so that data protected
by a lock can be converted to$locked data. Each coercion gener-
ates code to acquire the lock being coerced in order to maintain the

invariant of the prelocked variable. Additionally, prelocked vari-
ables must be well nested with respect to atomic sections: an atomic
section cannot end during the lifetime of a$locked variable. In
particular, global variables cannot be prelocked.

Variables marked$locked are particularly useful for function
parameters, since Autolocker does not have any parametric poly-
morphism. A function with a prelocked parameter can be called
with either a protected or an unprotected value. If the value is pro-
tected, the lock protecting it is acquired before the function call.
This approach has the advantage that the callee may be completely
ignorant of locking. This property is important for supporting ex-
ternal libraries.

5.3 Reader/Writer Locks

Reader/writer locks extend mutexes by allowing a lock to be ac-
quired by n readersor by 1 writer. They can significantly in-
crease available concurrency for programs accessing mostly read-
only data structures. For instance, a hash table protected by a global
read/write lock might allow concurrent lookups.

Autolocker supports using either mutexes or reader/writer locks
on a per-lock declaration basis. If a given atomic section includes
a write to something protected by a reader/writer lockL, then all
acquires of that lock in that atomic section will be write acquires.
Otherwise, the acquires will be read acquires (acquiring a lock first
for read and then for write can lead to deadlock, from ch 17.3 of
[29]).

5.4 Multi-Granularity Locking

In many cases, reader/writer locks are used in a hierarchical fash-
ion. For instance, similar to our first example, a hash table may
have a global reader/writer lock protecting the hash table’s arrays
and mutexes protecting each bucket. If the program has acquired
the global lock for writing (e.g., because it is resizing the table),
it does not need to acquire the bucket locks. The bucket locks are
used when accessing individual hash entries; in this case, the global
lock is held for reading. This organization, called multi-granularity
locking in the database literature [14], increases the concurrency of
operations that only modify individual buckets.

In Autolocker, a lockL can be declared assubordinatedto
a reader/writer lockL′. Autolocker will automatically acquireL′

whenever it would acquireL; additionally, if L′ is known to be
acquired for writes, the acquires ofL will be suppressed. Note that
this also implies thatL′ must come beforeL in the global lock
order. Our current implementation only supports subordination to
global locks. We expect to extend this to locks specified relative to
L (e.g.,parent->lock); we have not implemented this yet as it
would require better alias analysis in Autolocker to be useful.

6. Evaluation
Autolocker is implemented as a 2,500 line extension to the CIL
C analysis framework [25]. Although the algorithm has been de-
scribed in previous sections via the intersection of regular lan-
guages, the actual Autolocker tool uses more conventional tech-
niques. It analyzes lock usage and kill information using a flow-
insensitive type analysis. It determines lock ordering via a dataflow
analysis.

For call-graph construction, functions are grouped into equiva-
lence classes as in a standard unification-based alias analysis. The
call-graph is used to determine computation histories for the pro-
gram. For simplicity, local lock lvalues are killed at the end of a
function. In some cases, this simplification may lead the lock or-
dering algorithm to be overly conservative. In the rare case that it
occurred, inlining solved the problem.

We unsoundly assume that external library functions acquire no
locks. Eventually, we plan to offer a mechanism where lock order-

ing is specified in module interfaces. However, in our benchmarks,
locking was not used by any external libraries. Autolockerdoes
allow external libraries to access shared data. For this to work, the
programmer must add$locked annotations to the library interface.
We used this feature extensively in our larger benchmark.

The goal of the evaluation was to test whether Autolocker is
efficient, practical, and expressive. To test efficiency, we used a
highly concurrent hash table and a FIFO queue with less poten-
tial for concurrency. We compared Autolocker to manual locking
and to two recent software transactional memory implementations.
The Autolocker versions performed comparably to manual locking,
scaled well and had significantly higher throughput (from 1.6x to
3.4x) than the transactional memory versions. For measuring the
practicality and expressiveness of our tool, we annotated a large
(50,000 line) open-source web server. We attempted to use exactly
the same locking policy in the Autolocker version of the server as
in the original, and we succeeded in 78 out of 82 modules. The
rest of this section presents our experiences, performance data, and
possible improvements to the Autolocker algorithm.

6.1 Hash Table Microbenchmark

We implemented a concurrent, non-resizable hash table using Au-
tolocker and compared it with several other versions of the same
data structure. These included a single-threaded version, manual
locking versions using coarse- and fine-grained locking, two Au-
tolocker versions with the same trade-offs, and two versions us-
ing software transactional memory. One STM used an object-based
transaction manager by Fraser and Harris [13]. The other used a
similar transaction manager by Ennals with better cache locality
and a different way of handling conflicts [5].

We used a non-resizable hash table implementation because the
transactional memory systems we benchmarked had limitations on
object size and on the total amount of memory that can be touched
in a single transaction.

We ran benchmarks on an Intel server with four 1.9 GHz Xeon
processors with HyperThreading. Each processor had 512 KB of
cache and the machine had 1 GB of main memory. The mix of
hash table operations was 10% insertions, 10% deletions, and 80%
lookups. We did not see significant relative variations when we
varied the load. We used a hash table load factor ofα = 1, and
the benchmarks seemed fairly insensitive to this parameter as well.
We measured the number of operations per second performed by a
single thread (top graph in Figure 6), as well as the total number of
operations per second (bottom graph).

As would be expected, Figure 6 shows that the single-threaded
version performs best in terms of operations per secondper thread,
since it has no contention or locking overhead at all. The Au-
tolocker versions performed slightly worse than manual locking
version for both coarse- and fine-grained policies. The difference
is due to the overhead of the Autolocker runtime, which must track
the set of locks owned by a thread at any time. The versions with
coarse-grained policies performed slightly better than their fine-
grained counterparts for one thread, but they are unable to take
advantage of extra processors.

The fine-grained policies scaled fairly well up to four threads,
which is the number of processors in the machine. In the Au-
tolocker version, each thread of the 4 thread configuration per-
formed only 30% less work than with only one thread. As the num-
ber of threads increases beyond four, each thread naturally must do
less work. However, in the 32 thread configuration of Autolocker,
each thread performed 144 operations per second, which is actually
better throughput overall than the 4 thread version. The highest to-
tal throughput was achieved with 6 threads, which means that the
fine-grained implementations took advantage of HyperThreading.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8

Ki
lo

 o
pe

ra
tio

ns
 /

se
c

/ t
hr

ea
d

threads

S
L-FG

AL-FG
L-CG

AL-CG
STM-E
STM-F

 0

 1000

 2000

 3000

 4000

 5000

 6000

 32 28 24 20 16 12 8 4 1

Ki
lo

 o
pe

ra
tio

ns
 /

se
c

threads

L-FG
AL-FG

L-CG
AL-CG
STM-E
STM-F

Figure 6. Hash table performance with 10% insertions, 10% dele-
tions, load factor of 1. The top graph shows operations per second
of a single thread for up to 8 threads. The bottom graph showstotal
operations per second for up to 32 threads.

The transactional memory versions had very high overhead, but
also scaled well. In general, the transactional memory manager by
Ennals [5] performed somewhat better than the one by Harris and
Fraser [13]. The Ennals version performed 30% worse between the
1 and 4 thread versions—about the same scaling as Autolocker.
The Ennals manager also scaled to 32 processor about as well as
Autolocker did. However, overhead was clearly significant for both
transaction managers. At 4 threads, the Ennals manager was 3.4x
slower than Autolocker.

6.2 FIFO Microbenchmark

We did another microbenchmark with different FIFO queue imple-
mentations. The FIFO we implemented has infinite length and does
not block waiting when it is empty. It is implemented as a singly
linked list with head and tail pointers. We benchmarked versions
that used either one lock to protect the entire structure or two locks
to protect the head and the tail. The two-lock version is based on
the algorithm from Michael and Scott [23]. We implemented these
locking versions using manual locks and Autolocker. We also tested
variants that used the transaction managers from Fraser et al. and
Ennals.

The experiments were done on a server with four 2.0 Ghz
Xeon CPUs. An equal number of producer and consumer threads
contended for access to the queue. Figure 7 shows performance
numbers. In general, throughput did not increase with more threads
because the head and tail pointers were heavily contented, limiting
concurrency to at most two threads. This is very different from the
hash table experiment, where contention was low. The Autolocker
versions were about 20% slower than the manual versions. In all
cases, the two-lock versions performed better than STM versions.
The Autolocker version with two locks was 1.6x to 2x faster than
the transaction manager of Fraser et al.

Note that memory layout affected synchronization performance
significantly. All the variants tested above used the default gcc

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 1 2 4 8 16 32

K
O

ps
/S

ec
on

d
(to

ta
l)

Number of producers/consumers

1L
AL1L

2L
AL2L

STM-F
STM-E

Figure 7. FIFO performance with different concurrency levels.

memory layout. Autolocker gives the programmer the freedom to
lay out memory as desired, just as with manual locking. As an
experiment, we aligned data in the two-lock Autolocker variant so
that head pointer and its lock were on a different cache line from the
tail pointer and its lock. This version performed about 40% better
as seen in Figure 7. Transactional memory managers do not give
the programmer complete freedom to control cache layout, since
the transaction managers controls shared data.

6.3 AOLserver

AOLserver is an open-source web server initially released by
America Online. We chose it as a benchmark because of its heavy
use of threads as well as its reliance on a large external library (Tcl),
which is challenging for whole-program analysis. We made several
modifications to AOLserver to use it with Autolocker. First, we re-
placed each mutex acquisition/release with the beginning/end of an
atomic section. Most of these (73% of 143) were lexically scoped.
In a few cases where lock ownership crossed function boundaries,
atomic sections were enlarged somewhat to encompass more code,
since Autolocker forces all atomic sections to begin and end in the
same function. We broadened fewer than 10 atomic sections.

Next, we examined the code to determine the variables that
were shared and the locks that protected those variables. This
task was inherently difficult, since the codebase was large and
unfamiliar. We added lock protection annotations to each shared
variable. Our goal was to use exactly the same locking policy as
the original code. To check for errors, we preserved the original
locking code inside each atomic section. If the Autolocker runtime
did not acquire the same locks as the original code, an error was
triggered. This technique does not guarantee that all lock protection
annotations are correct, but it does ensure dynamically that the
modified program has at most as many race conditions as the
original one.2

Besides lock protections, we also added a number of condi-
tion variable and prelocking annotations. Prelocking was partic-
ularly useful when the AOLserver code made use of Tcl data
structures (such as hash tables) that were not designed to be pro-
tected by locks. This forms an important modularity advantage
for Autolocker: we can easily integrate third-party code that was
not designed for concurrency (unlike software-based optimistic ap-
proaches).

2 Interestingly, although Autolocker is not designed to detect race condi-
tions, we found several likely races while studying the code. Explicitly
writing lock protection annotations is a useful mechanism for formalizing
and documenting the information that most programmers store only in their
heads.

Autolocker also required 175 “trusted” casts, in which lock pro-
tection annotations were added or removed from a type. Many of
these trusted casts were necessary in order to compensate for C’s
impoverished type system. Of the 175 trusted casts that we added to
AOLserver, we estimate that all but 23 could be eliminated with a
more expressive type system. In particular, 51 casts were caused by
C’s lack of parametric polymorphism, which was problematic when
locked data was added to data structures. Forty-five casts were due
to standard C library functions likemalloc and memcpy, which
operate onvoid* data. Twenty-four casts were used when dealing
with callback functions, which could be solved with closures, ob-
jects, or existential types. Sixteen casts were used to approximate
abstract types in C, and another sixteen were used to circumvent
the type system in miscellaneous ways.

The remaining 23 of 175 trusted casts were needed when shared
data became unshared, or vice versa. It is not uncommon for data
to be shared only under certain conditions, such as when it is stored
in a data structure. Autolocker’s static type system does not ade-
quately characterize such relationships. We used trusted casts to cir-
cumvent the problem, since our goal was to replicate AOLserver’s
original locking policy as closely as possible. However, a better so-
lution might be to conservatively assume that the data in question
is always shared. There may be a performance cost in additional
locking overhead. However, we expect it to be small, since the locks
only need to be acquired inside atomic sections; the data is unlikely
to be accessed there during the time when it is unshared.

In four modules of AOLserver (out of a total of 82), we were
unable to replicate the original locking policy. In these cases, the
Autolocker analysis was too conservative and the program was
rejected for deadlocks. To compensate, we coarsened the locking
granularity so that the analysis would succeed. Each of the four
modules created networks of dynamically allocated objects. The
objects in a network were protected by a single lock, which was
stored in a central object. The remaining objects kept a pointer to
the central object in order to access the lock. Frequently, several
objects in a network were accessed in a single atomic section. Au-
tolocker rejected the programs because it was unable to determine
that the objects being accessed all belonged to the same network,
and thus used the same lock. If the objects had been of different
networks, then the program might have deadlocked. The “same net-
work” property is a data structure shape invariant that is difficult to
infer statically.

We believe that this problem can be solved using regions. Tra-
ditionally, regions are used to group objects that have the same life-
time. The type system ties the liveness of each object to the liveness
of the region itself, which is usually well-known statically. In the
case of Autolocker, objects in a region would share the same lock.
The lock would be tied to the region itself, rather than to any par-
ticular object. In order to ensure deadlock freedom, the type system
would simply ensure that the objects being accessed in an atomic
section belong to the same region, which is much more tractable
than checking shape information. We believe adding regions will
broaden the set of programs Autolocker accepts.

We benchmarked AOLserver using Apache bench on a two-
processor machine with four machines to generate load. The load
generators requested a single two-byte file in order to reduce I/O la-
tency and make the CPU the bottleneck. The throughput penalty of
Autolocker ranged from 2.0% to 4.9%. In a more realistic configu-
ration, the performance penalty would likely disappear all together.

In total, about 1% of the AOLserver codebase was affected
by the Autolocker transition. The most difficult and error-prone
annotations to generate by far were those related to data sharing.
However, their presence improves the program’s documentation.

7. Related Work
Autolocker is complementary to dynamic race detection tech-
niques, such as those based on locksets [26, 32], happens-before
relationships [4, 33], or both [34]. These tools detect the absence
of locks and thus could be used to infer missing lock annotations.
However, their success depends on the specific execution and may
have false negatives.

Flanagan and Freund [6] and Boyapati [3] useguarded by
annotations to ensure race-freedom of Java programs. Boyapati’s
SafeJava system can express somewhat more complex locking poli-
cies than Autolocker, in particular through its “ownership” con-
cept (we believe we can add some of SafeJava’s features to Au-
tolocker). Subsequently, Flanagan, Freund, Qadeer have combined
guarded by annotations with explicitly declared atomicity con-
straints (similar toatomic statements). They use static [11] or dy-
namic [7] analysis to ensure that the locking policy chosen by the
programmer actually enforces the declared atomicity constraints.
They have also developed analyses to inferguarded by annota-
tions [8], atomicity constraints [10] and to insert missing synchro-
nization operations [9]. This last system is closest to Autolocker:
based on explicit lock protection annotations and atomicity require-
ments, locking calls are automatically inserted. Sasturkar et al. [31],
combine object ownership with Flanagan et al’s annotations to be
able to describe more locking policies. Of the system’s above, only
Boyapati’s addresses the issue of deadlock, based on statically ver-
ifying locking calls against a programmer-specified lock order.

Excepting [9], these systems rely on manually inserted locking
calls, and thus provide little benefit in actually writing or modi-
fying code. Manually locking has two potential advantages over
Autolocker: greater performance, and expression of more general
locking policies. For the former case, our benchmark’s show that in
practice Autolocker’s overhead is relatively low. For the latter, we
believe that if a lock-checking algorithm has enough information
at an access to prove that necessary locks are held, then it also has
enough information to insert lock acquisition calls, and that this is
the better policy.

Herlihy and Moss [20] proposed the first transactional memory
hardware based on extending cache-coherency mechanisms; Ra-
jwar and Goodman [27] used similar cache-coherency-based hard-
ware transaction support to execute lock-based programs optimisti-
cally. These systems only support bounded-size transactions, and
do not allow for context switches or page faults, making them
impractical for implementing transactions in a programming lan-
guage. These limitations have been addressed in the more recent
work by Ananian et al. [2], Moore et al. [24] and Rajwar et al. [28].
All three propose hardware transaction mechanisms that support
unbounded-size, long-running transactions, at the expense of fairly
complex hardware support. None of these proposals is available in
current or near-future hardware.

Software transactional memory systems, such as those imple-
mented by Harris and Fraser [12, 16, 17] and Herlihy et al. [19],
run on existing hardware. However, they have fairly high overhead.
Ennals [5] argues that this overhead is in part due to (unneces-
sary) obstruction-freedom guarantees.3 Ennals’s system is based on
two-phase locking of accessed objects; however, unlike Autolocker,
it must support rollback as it relies on aborting transactions that
are found to deadlock at runtime. It is thus more akin to the op-
timistic concurrency models of the other hardware and software
transactional memory systems, and has the same problems with
non-reversible actions such as I/O. Conversely, supporting rollback
allows for more elegant and composable code within atomic sec-
tions, as proposed by Harris et al. [18].

3 A system is obstruction-free if suspending one thread does not prevents
others from making progress.

The relative merits of optimistic and pessimistic concurrency
control were the subject of many studies in the database litera-
ture [1]. For that community, the collective wisdom appears to be
that optimistic is only better under excess resources (due to the
waste of replay under contention), and that this situation is rare.
To the extent that target programs may have long-lived locks (e.g.
due to I/O or blocking calls), we expect these results apply.

8. Conclusion
In this paper we presented Autolocker, an automatic lock insertion
algorithm, along with a prototype implementation. Our initial re-
sults are promising: Autolocker effectively supports existing, re-
alistic applications with low overhead. We plan to improve Au-
tolocker in a number of ways. First, we wish to infer data sharing
rather than forcing the programmer to annotate it. This would elim-
inate race conditions. We also plan to augment Autolocker with
advanced language features, such as parametric polymorphism and
regions, to reduce the number of programs rejected due to potential
deadlocks. Finally, we will explore hybrid solutions that combine
optimistic and pessimistic concurrency control to obtain the best
possible performance.

Given the importance that parallelism will surely play in future
systems, we believe that it is important to consider a wide variety
of techniques for handling synchronization. Autolocker is an un-
explored point in this space. Based on our evaluation, pessimistic
atomic sections provide good performance and compatibility with-
out restrictions on I/O, while requiring only a moderate level of
annotation from the programmer. In the future, we believe that pes-
simistic atomic sections will play an important role in improving
concurrent systems.

Acknowledgments We would like to thank AJ Shankar, Manu
Sridharan, and the anonymous reviewers for their helpful com-
ments on this paper.

References
[1] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency

control performance modeling: Alternatives and implications.ACM
Trans. Database Syst., 12(4):609–654, 1987.

[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.
Leiserson, and Sean Lie. Unbounded transactional memory. InHPCA
’05, pages 316–327. Feb 2005.

[3] Chandrasekhar Boyapati.SafeJava: A Unified Type System for Safe
Programming. PhD thesis, Massachusetts Institute of Technology,
2004.

[4] M. Christiaens and K. de Bosschere. TRaDE: A topological approach
to on-the-fly race detection in java programs. InProc. of the Java
Virtual Machine Research and Technology Symposium, April 2001.

[5] Robert Ennals. Software transactional memory should not be
obstruction-free. http://www.cambridge.intel-research.
net/~rennals/faststm.html.

[6] Cormac Flanagan and Stephen N. Freund. Type-based race detection
for java. InPLDI ’00, pages 219–232, 2000.

[7] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. InPOPL ’04, pages
256–267, 2004.

[8] Cormac Flanagan and Stephen N. Freund. Type Inference Against
Races. InSAS’04, pages 116–132, 2004.

[9] Cormac Flanagan and Stephen N. Freund. Automatic Synchroniza-
tion Correction. InSynchronization and Concurrency in Object-
Oriented Languages (SCOOL), 2005.

[10] Cormac Flanagan, Stephen N. Freund, and Marina Lifshin. Type
Inference for Atomicity. InTLDI ’05, pages 47–58, 2005.

[11] Cormac Flanagan and Shaz Qadeer. A type and effect system for
atomicity. InPLDI ’03, pages 338–349, 2003.

[12] Keir Fraser. Practical lock freedom. PhD thesis, Cambridge
University Computer Laboratory, 2003. Also available as Technical
Report UCAM-CL-TR-579.

[13] Keir Fraser and Tim Harris. Concurrent programming without
locks. http://www.cl.cam.ac.uk/Research/SRG/netos/
lock-free.

[14] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity
of locks and degrees of consistency in a shared data base. Technical
report, IBM Research Laboratory, 1975. Report RJ 1654.

[15] Tim Harris. Exceptions and side-effects in atomic blocks. InPro-
ceedings of the 2004 Workshop on Concurrency and Synchronization
in Java programs, pages 46–53, Jul 2004. Proceedings published as
Memorial University of Newfoundland CS Technical Report 2004-01.

[16] Tim Harris and Keir Fraser. Language support for lightweight
transactions. InOOPSLA ’03, pages 388–402. Oct 2003.

[17] Tim Harris and Keir Fraser. Revocable locks for non-blocking
programming. InPPoPP ’05. Jun 2005.

[18] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice
Herlihy. Composable memory transactions. InPPoPP ’05. Jun
2005.

[19] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer III. Software transactional memory for dynamic-sized data
structures. InPODC ’03, pages 92–101. Jul 2003.

[20] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
Architectural support for lock-free data structures. InISCA ’93,
pages 289–300. May 1993.

[21] Barbara Liskov and Robert Scheifler. Guardians and Actions: Lin-
guistic Support for Robust, Distributed Programs.ACM Transactions
on Programming Languages and Systems, 5(3):381–404, 1983.

[22] D. B. Lomet. Process Structuring, Synchronization, and Recovery
using Atomic actions. InProceedings of an ACM Conference on
Language Design for Reliable Software, pages 128–137, 1977.

[23] Maged M. Michael and Michael L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. InPODC
’96, pages 267–275, 1996.

[24] Kevin E. Moore, Mark D. Hill, and David A. Wood. Thread-level
transactional memory. Technical report, University of Wisconsin,
Mar 2005. CS-TR-2005-1524.

[25] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley
Weimer. CIL: Intermediate language and tools for analysis and
transformation of C programs. InCC ’02, pages 213–228, 2002.

[26] C. Praun and T. Gross. Object race detection. InOOPSLA ’01, pages
70–82, 2001.

[27] Ravi Rajwar and James R. Goodman. Transactional lock-free
execution of lock-based programs. InASPLOS ’02, pages 5–17.
Oct 2002.

[28] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing
transactional memory. InISCA ’05, pages 494–505. Jun 2005.

[29] Raghu Ramakrishnan and Johannes Gehrke.Database Management
Systems. McGraw-Hill Science/Engineering/Math, 2002.

[30] Alexandru Salcianu and Martin Rinard. Pointer and escape analysis
for multithreaded programs. InPPoPP ’01. Jun 2001.

[31] Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and Scott D. Stoller.
Automated Type-Based Analysis of Data Races and Atomicity. In
PPoPP ’05, pages 83–94, 2005.

[32] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multi-threaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[33] E. Schonberg. On-the-fly detection of access anomalies. InPLDI ’89,
pages 285–297, 1989.

[34] Y. Yu, T. L. Rodeheffer, and W. Chen. RaceTrack: Efficient detection
of data race conditions via adaptive tracking. Technical report,
Microsoft Research, 2005. MSR-TR-2005-54.

(LVALUE)

(Σ, σ, κ, q)
lv→ `

σ(`) = (v, τ, L) L ⊆ κ

(Σ, σ, κ, q)
e→ v

(ACQ)

(Σ, σ, κ, q)
lv→ ` κ′ = κ ∪ {`}

` 6∈ κ ⇒ ∀`′ ∈ κ. σ(`′) ≺ σ(`)

(Σ, σ, κ, acqq)
s→ (σ, κ′, skip)

Figure 8. An excerpt of the operational semantics of LockC.

A. Soundness
In this section, we outline a proof that the LockC type system (Fig-
ure 3) ensures that well-typed and well-formed programs do not go
wrong according to an operational semantics we have formulated.
This proof assumes that a lock order< has already been specified.
It must be the same lock order as is used in the well-formedness
checks.

Our operational semantics uses several mappings.Σ is an en-
vironment that maps variable names to the locations where they
are stored in the heap.σ is a heap that maps locations to the val-
ues stored there. Technically, for any location`, σ(`) = (v, τ, L),
wherev is a value of typeτ . The location is protected by locks in
setL. The set of locks that are currently held is stored in setκ.

We define the operational semantics via three relations. We use
big-step rules for the evaluation of lvalues and expressions and
small-step rules for statements.

(Σ, σ, κ, q)
lv→ 〈` : location〉

(Σ, σ, κ, e)
e→ 〈v : value〉

(Σ, σ, κ, s)
s→ (σ′, κ′, s′)

The two most important rules in the semantics are shown in
Figure 8. The rule for evaluating lvalues checks that all locks
that protect a given memory location are contained in the set of
currently held locksκ. The rule for acquiring locks adds the new
lock to κ. It also checks that if the lock is not already held then no
held lock should precede it in the lock order. This check is made
using≺, which simply finds the IDs of two locks based on their
heap entries and then compares them using the standard lock order
<.

Since LockC uses assume statements and non-determinism for
control flow, there is the possibility that an ill-formed program
will typecheck but will fail to evaluate. For example, the program
“assume 0” cannot be evaluated even though it typechecks. To
avoid this problem, we add an extra validity requirement beyond
type checking to ensure that assume statements only occur in valid
places. We call this requirement SyntaxValid(s). It checks that all
repeat statements begin with an assume statement, and that choice
statements begin with contradictory assume statements. No other
assume statements are allowed.

We use a standard progress + preservation argument to prove
soundness. As is typical in such proofs, we maintain a correspon-
dence between the “runtime information”Σ, σ, and κ and the
“static information” consisting ofΓ and the computation history.
First, we ensure thatΣ andσ are always well-typed with respect
to Γ. We also ensure that whatever lock protections appear in the
types inΓ are reflected in theL components of the heap entries in
σ.

However, the most important correspondence is betweenκ and
the computation history. The history represents a static approxima-
tion of the set of locks that are held by the program. The (LVALUE)
rule of the operational semantics requires that we have a staticun-
der-approximation of the set of held locks to guarantee that the pro-
gram holds at least the ones that are needed. The (ACQ) rule forces
us to have a staticover-approximation of the held locks to ensure

that the program holds no locks that are ordered before the one be-
ing acquired. We connectH to κ by ensuring that some stringh
in L(H) (i.e., the history of some path in the program) approxi-
matesκ. Because it includes kill information, the stringh is both
an under-approximation and an over-approximation ofκ.

The under-approximation is obtained fromh by determining the
set of locks that are acquired and then never killed. Stated formally,

κ ⊇ {` : ∃q. h ∈ L(−⊕
q [̂

�
q]∗) ∧ (Σ, σ, κ, q)

lv→ `}.
That is, every lock lvalue that is acquired and not killed should
evaluate to a location that is inκ.

The over-approximation is actually an over-approximation of
lock IDs. We simply find the IDs of all lock lvalues that are acquired
in h. Let locids(σ, κ) be the set of lock IDs of locks inκ. Then the
formal statement of the over-approximation is

locids(σ, κ) ⊆ {id(Γ, q) : h ∈ L(−⊕
q−)}.

Recall that id(Γ, q) is simply the ID of the lock lvalueq. The
condition means that all the locks that are held inκ are represented
by a lock acquired inh with the same ID.

We combine the heap validity condition with the under-approximation
and over-approximation conditions onκ andH to form a new re-
lation∼. Formally,

(Γ, H) ∼ (Σ, σ, κ) ≡ HeapValid(Γ, Σ, σ)

∧ UnderApprox(H, κ)

∧ OverApprox(H, κ)

We use this relation to state the progress and preservation lemmas
formally.

LEMMA 2 (Progress).If Γ `s s : H and SyntaxValid(s) and
(Γ, H0) ∼ (Σ, σ, κ) and WF(H0 · H, <, Γ) then there exist
σ′, κ′, s′ such that(Σ, σ, κ, s)

s→ (σ′, κ′, s′).

In this lemma, the historyH0 is the initial history that brought
the program into a state with lock setκ. The historyH summarizes
any changes caused by the statements. The entire history,H0 ·H,
must be well-formed fors to make progress with lock setκ.

LEMMA 3 (Preservation).If Γ `s s : H and SyntaxValid(s) and
(Γ, H0) ∼ (Σ, σ, κ) and WF(H0 · H, <, Γ) and (Σ, σ, κ, s)

s→
(σ′, κ′, s′) then there existH1, H2 such thatΓ `s s′ : H2 and
SyntaxValid(s′) and L(H1 · H2) ⊆ L(H) and (Γ, H0 · H1) ∼
(Σ, σ′, κ′).

In this lemma,H0 is again the initial history. The statements
proceeds tos′ by the operational semantics. Since our rules for
statements are small-step,s′ is in some sense the remaining work
to be completed fors. Thus, we divide the historyH for s into two
parts,H1 andH2. H1 is the history completed during the step from
s to s′ andH2 is the history that must be completed by evaluation
of s′. That means thatH0 ·H1 is the history for lock setκ′, which
was reached after the step tos′. And the new statements′ must
type check with historyH2, since that is the work that remains to
be done.

The proofs of progress and preservation are fairly typical, al-
though they rely on the correctness of the killed function in the
typing rule for assignments. We omit the details.

