
CS268 Course Project

Understanding Chord Performance

and Topology-aware Overlay Construction for Chord

Li Zhuang(zl@cs), Feng Zhou(zf@cs)

Abstract

We studied performance of the Chord scalable lookup system with several performance enhance-
ments. For the denser finger technique, we gave analytical result that shows the average lookup path
length decreases slower than the maximum length and converges to it as finger density grows higher.
Location cache, as implemented in MIT Chord, is shown to be able to reduce the lookup path length
by 1/2 of the logarithm of cache size, which makes it very effective in static networks. However, our
experiments with the MIT Chord implementation shows that because of the stale-entry problem,
the location cache does not scale to more than 2000 nodes in a typical file-swapping network setting
and there are plenty of room for improvement. We found that server selection is an effective way
of reducing lookup stretch. In the ideal exponential delay network, Chord with server selection and
a O(log2N) entry routing table will have O(1) lookup stretch. In a transit-stubs network, server
selection still achieves 50% improvement of lookup stretch. The other part of our work is a topology-
aware overlay construction scheme for Chord. During the setup of the network, Principle Component
Analysis is used to select representative landmarks from a pool of nodes and place the landmarks to
appropriate positions on the Chord ID circle. Later a two-level approach is used to assign each new
node a locally optimal ID. Preliminary results show that this improves routing locality of the Chord
algorithm. 21% reduction in lookup stretch is observed in a 600-node transit stub topology.

1 Motivation

Structured overlay networks [10], [6], [4], [9] provides similar O(log N) bounds on lookup time measured
in hop counts. This asymptotic lookup path length, combined with low per-node state, guarantees the
scalability of such systems. However, other factors such as the constants in O(log N) and average
latency of each overlay hop, affects the performance of these systems significantly. A plethora of
techniques have been proposed to enhance lookup performance, including proximity routing ([1], [4]
and server selection [2]), geographic overlay construction [6] and landmark routing [12]. In the case of
Chord[10], the classic algorithm is simple and has provable correctness and robustness. But its lookup
performance is relatively low compared to Tapestry[4], Pastry[9] and others exploiting routing locality.
There have been discussion about possible improvements and the MIT Chord has implemented some of
them. However, few results are published on these improvements. The first part of this report presents
analysis and experiment results of several existing performance enhancing techniques of Chord. The
purpose of our work is to find out how Chord with these improvements perform in large networks and
changing networks. Our methodology is a combination of analysis, simulation and benchmarking.

The second part proposes a topology-aware overlay construction scheme for Chord. It assigns similar
IDs to nearby nodes in the network. Because most overlay hops during lookup only skip small portions
of the whole ID circle, constructing the overlay this way will improve routing locality. A fundamental
question [7] here is how much we can possibly improve, especially when the ID space is one dimensional
in Chord. Instead of trying to pursue the question theoretically, we try to answer it by proposing an
actual scheme and doing experiments. This is on-going work and we present preliminary results.

1



2 Chord Performance, with Existing Enhancements

2.1 Average Lookup Path Length with Denser Fingers

The Chord protocol as presented in [10] keeps very little per-node state, compared to other systems
such as Pastry and Tapestry. Only log N fingers, one successor and one predecessor pointers are kept
per node. successor(id + 2n) are kept as fingers, which are overlay routing table entries. Fingers
are followed during routing to find the owner (successor) of the target id. In future work part [11],
the authors propose a generalization to Chord, using denser fingers as a performance enhancement.
Now fingers are placed at points successor(id + (1 + 1/d)n). d is a tunable integer parameter. A
larger d results in denser fingers and d = 1 corresponds to the normal Chord. Under this scheme, a
routing hop will decrease the distance to query target to at most 1/(1 + d) of the original distance.
Therefore assuming even node distribution, the query target will be found in at most log1+d N hops,
which is 1/ log(1 + d) of the original max path length. The number of fingers kept by each node is
now log N/ log(1 + 1/d) ≈ O(d log N). By keeping d times fingers, maximum path length is reduced to
1/ log(1 + d) of the original.

However, average path length, not the maximum, is often more interesting to us. Below we give an
estimation of the average path length of this scheme. It turns out that the improvement is not as good
as for the maximum path length. First, we have the following property,

Property 1. Suppose the average query path length of a N node Chord network is Lavg(N). Then
the average path length of a lookup on a portion α (0 < α ≤ 1) of the Chord ID circle is approximately
Lavg(αN).

In other words, querying on a part of the Chord ID circle is the same as querying a whole Chord
network with the same number of nodes. The correctness is easy to see. It is because at each hop
during the lookup, the fingers divides the relevant portion of ID circle into pieces of same proportions.
Therefore the number of hops is determined by how many level of fingers are there for each piece, which
is in turned determined by the total number of nodes within the ID range.

Also observe that the farthest finger of any node divides the ID circle into two portions: 1/(1+d) for
all IDs larger than the finger and d/(1 + d) smaller. If the query target ID falls into the first 1/(1 + d),
the first finger will be followed and that node will in turn handle the query. If it falls into the second
part of length d/(1 + d), it will be handled locally. Therefore using the previous property, we have this
for average lookup path length Lavg(N),

Lavg(N) =
1

1 + d
(1 + Lavg(

N

1 + d
)) +

d

1 + d
Lavg(

dN

1 + d
)

We know Lavg(N) = cavg log N asymptotically, where cavg is a constant that depends on d. Therefore
by solving this equation for cavg, we get,

Lavg(N) =
1

(1 + d) log(1 + d)− d log d
log N

When d = 1, i.e. normal Chord, we have Lavg(N) = 0.5 log N , which agrees with experiments in
[11]. The maximum path length, Lmax(N), is 1

log(1+d) log N . Figure 1 shows the relationship between
Lavg(N) and Lmax(N). For example, when d = 32, Lavg(N) ≈ 0.8Lmax(N). It shows the improvements
we get by increasing d is less than that suggested by the trend of Lmax(N). Actually, when d is large,

Lavg(N) =
1

log(1 + d) + d log(1 + 1/d)
log N → 1

1 + log(1 + d)
log N → Lmax(N)

Figure 2 is the result obtained from simulation. The network size is 10,000 nodes and 10,000 lookups
from random nodes are done for each d value. It confirms the analysis result.

2



 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30
d (finger density)

L_avg(d)/L_avg(1)
L_max(d)/L_max(1)
L_avg(d)/L_max(d)

Figure 1: Average lookup path length vs. maxi-
mum with different finger density

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7  8  9  10

L_
av

g 
(a

ve
ra

ge
 lo

ok
up

 p
at

h 
le

ng
th

)

d (finger density)

Simulation
Predicted

Figure 2: Simulated and predicted path length
with different finger density

In summary, denser fingers decrease lookup path length. But the improvement in average case is
slightly less than previous conjectured.

2.2 Location Caching

The MIT Chord implementation [5] includes a often overlooked performance feature, a location cache
that remembers most recently seen ID-to-host mappings. During lookup operations, location cache
entries are treated the same as fingers (actually fingers are implemented simply as pinned location
cache entries). Benchmark results with the location cache (in original version of [8]) has shown that in
a small network (83 nodes), this cached is very effective and Chord out-performs Tapestry, which uses
proximity routing, by 37%. In contrast, the revised version of [8] shows that without the cache, Chord
is 2.9 times slower than Tapestry. Actually, if the predecessor node of the target ID is in the location
cache of the querying host, the query path length is always 1. For lookup-intensive applications like
CFS [2], this will greatly increase performance and reduce total traffic. However, despite the obvious
improvement the location cache brought by, there has been little discussion about it. Most papers
simply left it as an implementation detail. This contrasts with the emphasis placed on caching in other
topics such as collaborate Web proxies and operating systems in general. Therefore we believe it is
interesting to find out the benefits and limitations of this technique.

2.2.1 Estimation of cache effectiveness

For a very large network, certainly nodes can not cache location of every other node. But this per-node
state limit is not a real limit. Each location cache entry in Chord takes 72 bytes. Thus a 10 MB
Chord location cache has about 150,000 entries, which should be enough for most applications. Even
if locations of only a small portion of hosts are cached, significant improvement can be achieved. Let
C be the number of hosts cached. Intuitively, evenly distributed cache entries divides the Chord ID
circle into segments of same length. Therefore the first hop will jump into one of these segments and
the number of hops needed later is equal to lookup path length in a N/C-node network. The expected
lookup path length is roughly,

L̄c(N,C) ≈ 1
2

log
N

C
+ 1 = L̄(N)− 1

2
log C

This shows a unique feature of the location cache.

3



0 500 1000 1500 2000
25

30

35

40

45

50

55

60

Network Size

N
um

be
r o

f C
ac

he
 E

nt
rie

s

Figure 3: Average number of location cache en-
tries of a new node after stabilization

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

The i−th Query

Av
er

ag
e 

N
um

be
r o

f H
op

s

100
400
800
1200
2000

Network Size 

Figure 4: Changing average query path lengths
over time with location cache in a stable network

Property 2. The number of query hops saved by location cache is logarithmic to the number of
cache entries. In other words, the first few cache entries are most effective in reducing path length.

For example, in a 4,000-node network, caching only 64 nodes (1.5%) will halve the lookup path
length, from 6 to 3. An interesting question is whether this nice feature is a Chord privilege. It is not
clear how this large a reduction in query path length can be achieve in Pastry or Tapestry with only a
few cache entries.

Moreover, another significant benefit of location caching is that cache entries are obtained “for free”.
Unlike denser fingers and server selection (discussed later), the node doing lookup does not need to send
out packets to obtained the entries. They are accumulated for free.

2.2.2 Cold cache behavior

When a new node joins the network, it has a cold location cache. So we expect it to have much longer
query path than other nodes. However this turns out to be not true. When a node has joined the
network, it already has quite a few cache entries as a result of the stabilization (idealization) process.
As a result of property 2, this will significantly reduces its lookup path length right from the first
lookup. Figure 3 shows the average number of cache entries of a new node after first stabilization, for
different network sizes. This is obtained from actually running that number of Chord instances.

Figure 4 shows the average query path lengths of performing a series of random queries on a
particular node. Different lines show results for different network sizes. No other queries are going
on on other nodes during the process. The experiment is done in a cluster, by running many Chord
nodes on each physical node. Because the network is static with no nodes joining and leaving, the
LAN environment has on effect on the average query path length. The length of the first queries are
significantly lower than without cache, e.g., for a 2000-node network, the first query takes 2.6 hops,
compared to 5.319 hops without cache. The path lengths drop quickly as more queries are done and
more nodes are cached. Lengths for all network sizes fall below 1.5 after 500 queries. They converge
to 1, the absolute minimum, as nearly all nodes become cached. Figure 5 shows the result of doing
lookups from random nodes.

2.2.3 Caching in a changing network

The major limitation we found in the current location cache of MIT Chord implementation is it does not
deal with changing networks well. The main reason is that because cache entry validity is not actively

4



0   10000 20000 30000 40000 50000 60000 70000 80000 90000100000

1

1.5

2

2.5

3

3.5

The i−th Query in the Network

Av
er

ag
e 

N
um

be
r o

f H
op

s

100
400
1000
2000

Network Size 

Figure 5: Changing average query path lengths
over time with location cache in a stable network
(each lookup done from a random node)

0 100 200 300 400
1

2

3

4

5

6

7

The i−th query

N
um

be
r o

f H
op

s

static network
20min, 1query / 1s
20min, 1query / 5s
20min, 1query / 10s

Figure 6: Average query path lengths in a 2000-
node dynamic network with average node life of
20 minutes

0 100 200 300 400
1

2

3

4

The i−th query

N
um

be
r o

f H
op

s

static network
20min, 1query / 1s
20min, 1query / 5s
20min, 1query / 10s

Figure 7: Average query path lengths in a 400-
node dynamic network with average node life of
20 minutes

0 100 200 300 400
1

2

3

4

The i−th query

N
um

be
r o

f H
op

s

static network
40min, 1query / 1s
40min, 1query / 5s
40min, 1query / 10s

Figure 8: Average query path lengths in a 400-
node dynamic network with average node life of
40 minutes

verified, a node tends to have more and more stale cache entries over time. This results in time-outs
and redundant hops. In contrast, fingers are periodically verified, although in a lower frequency than
successors. Therefore in a highly dynamic network, routing using solely fingers could be better than
using location cache.

Figure 7 and 8 compares average path lengths in the same 400-node network, with 20-minute average
node life time and 40-minute average node life time, respectively. This experiment is also done in the
LAN environment. Different lines represent different query frequencies. Nodes doing more queries per
minute get lower query path lengths because each query refreshes part of the location cache. Queries
in the faster-changing network (figure 7) have longer path length than the slower one. Additionally,
figure 6 shows the same 20-minute life time experiment for a 2000 node network. This one has higher
(by 2) pikes than the 400-node case. In a larger network, with the same query speed and node life time,
refresh interval of each cache entry becomes longer. This is one scalability limit of the location cache.

These two figures give a rough idea of how dynamic the network can be for the cache to remain
useful. The average routing path length using fingers of a 2000-node network is 5.32 (obtained from
simulation), assuming fingers are maintained often enough to remain 100% valid. When the average

5



node life time is 20 minutes, a node doing 1 query per 10 seconds get nearly the same average query
path length using location cache and using fingers. This basically says the location cache will not save
network resource in this scenario. Moreover, lookup latency with the cache will be a lot higher because
of communication timeouts.

In summary, we see this stale cache problem as a real limitation of the location cache. For quickly-
evolving networks like a file-swapping peer-to-peer network, in which 20 minutes life time and 0.1 per
second query frequency are reasonable estimations, the current location cache in Chord will not scale to
2000 nodes. Nevertheless, the location cache will still be a very useful technique in a lot of applications
in which networks are changing more slowly.

2.3 Server Selection

Server selection is a kind of proximity routing, proposed in [2] and [11] to improve Chord lookup
performance. The idea is select the next hop to be not always the farthest non-overshooting finger, but
some node that is nearer in ID space but also nearer in terms of network latency. The hope is to avoid
jumping to nodes that are far away from both the starting node and the destination node.

There are different server selection schemes. The server selection scheme in CFS [2] (referred to as
inter-finger server selection hereafter) is based on query path length estimation. The number of ones
in the first log N bits of the ID-space distance between a finger and the query ID gives an estimation
of the length of the remaining query path from that finger. Multiply that estimated hop count by the
average hop latency, plus latency to that finger will yield an estimation of the total query latency from
current node if that finger is taken. The server selection algorithm selects the finger with the smallest
estimated latency.

The other server selection scheme proposed [11] (referred to as intra-finger server selection hereafter)
is to keep pointers to k consecutive nodes for each finger entry, all in that finger’s ID range. The k
nodes are almost equivalent for routing on the ID circle. But their network latency from the current
node can be very different. Therefore the lookup can be forwarded to the node with lowest latency. An
interesting property we found about this scheme is,

Property 3. Assuming exponential random latency between nodes and recursive lookup style, a Chord
network can achieve O(1) stretch lookup regarding network size using intra-finger server selection. The
per-node state needed is O(log2 N).

Proof. Suppose k pointers are kept for each finger. These nodes are random in the actual network. Let
their latency from the current node be Di (1 ≤ i ≤ k). {Di} are all independent random variables with
exponential distribution. Let the expectation of Di be d. Then the expected server-selected per-hop
latency is,

dss = Min{Di} = d/k

This is the result of a well-known property of exponential distribution: the minimum of k independent
exponential random variables is also exponential distributed, with parameter kλ.

This server selection procedure goes on until the second last hop, where the predecessor of the ID
is reached. Thus expected latency of the second last hop is d. The last hop goes from the predecessor
to the starting node, also with expected latency of d. Suppose server selection does not change query
path length (actually it will be a little shorter), the total expected query latency is,

S = (L(N)− 1)dss + 2d = (
1
2

log N − 1)
d

k
+ 2d

Stretch of the query is,

s =
S

2d
=

log N − 2
4k

+ 1

6



 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 100  1000  10000  100000

Lo
ok

up
 S

tre
tc

h

N (Network size)

No server selection
Inter-finger server selection
Intra-finger server selection

Figure 9: Stretch in exponential delay networks

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100  1000  10000

Lo
ok

up
 S

tre
tc

h

N (Network size)

No server selection
Intra-finger server selection
Inter-finger server selection

Figure 10: Stretch in transit-stub networks

Setting k = c log N will give us,

s = 1 +
1
4c

− 1
4c log N

= O(1)

s converges to 1 + 1
4c when N gets to infinity. When c = 0.5, the upper bound of stretch is 1.5.

Figure 9 shows simulation results for exponential delay networks, with no server selection, with
inter-finger server selection (CFS server selection) and with 1

2 log N -node-per-finger intra-finger server
selection (i.e. c = 1

2). The results agree with the above analysis. Stretch of intra-node server selection
remains below 1.5, while with no server selection or inter-node server selection, it goes up logarithmically
with network size.

The exponential delay assumption is not realistic. Figure 10 shows results of the same experiment
on transit-stub networks. Still, intra-finger server selection has much lower stretch than no server
selection and inter-finger server selection. One surprising result is inter-finger server selection actually
increases stretch in this topology. It is probably due to large errors in the query path length estimation
function. Counting number of ones is not a perfect estimation, because actual fingers are not exactly at
2n positions. They are after these position. So each finger can change more than one bit of the distance.
In another experiment (detailed result omitted), we found that using just logarithm of the distance as
path length estimation gives much better result, although it still improve stretch by no more than 5%
compared with no server selection.

In summary, by keeping more state (O(log2 N)) per node, Chord can achieve O(1) stretch in ex-
ponential delay networks using server selection. The stretch for real networks is higher but still much
better than without server selection. Note that in practice, the constants in this O(log2 N) can be quite
small (1

2 log2 N in our experiments). In comparison, Tapestry and Pastry has O(log N) entries in their
routing table. But it is indeed b(log N/ log b)+c, where b is the “radix”, typically 16. For a lot of useful
network sizes, this is not much smaller than 1

2 log2 N .

3 Topology-aware Overlay Construction in Chord

In current Chord design, the distance (i.e. latency) of each application hop is half of the average
network diameter. Even through the average Chord path is O(log n), a Chord query of still traverses
great actual network distance. An extreme example is that a Chord node queries objects right on its
successor might traverse average network diameter!

Intuitively, we expect the distance in ID space represents the the actually network distance. It is
obvious this property is desirable for every overlay structure network. For example, in Chord, we want
to project the geographic network “topology” to an one-dimension Chord ID space.

7



In CAN, the landmark reordering approach is used [6]. In CAN, the d-dimension ID space is cut to
m! cells with i pieces at the i-th dimension. A node is put in to the cell corresponding to the order of
RTTs to m landmarks. However, landmark reordering, which projects the network topology to a high
dimension ID space, can not be used in Chord, Pastry and Tapestry, which all use one-dimension ID
space. A topologically-aware construction method for overlay network which works for one-dimension
ID space, will benefit Chord as well as Tapestry and Pastry.

Here we proposed a classification based two-level geographic overlay construction method applicable
to any ID space.

3.1 Two Level landmarks

Initially, we have m bootstrap nodes randomly chosen from the whole Internet as “landmarks”, say
m = 50. Let D′ represents the network distance matrix among these “landmarks”:

D′ = {d′
ij}i,j=1,··· ,m

where d′
ij is the network distance between node i and j.

Some “landmarks” are very near each other, and the distance vector of these “landmarks” are
similar. Little extra geographic information we could get when a host pings more than one of these
similar “landmarks”. So, it is straight forward that we want to cluster the m “landmarks” based on the
distance matrix, and find some “representative” ones, which we call “level-1 landmarks”. Moreover, it
is desirable if we could put the “level-1 landmarks” at the right position in ID space where matches its
relative network location to all other landmarks.

This is a vector classification problem with known class specifications, which is suitable to be solved
by the Principle Component Analysis (PCA) method. What PCA could do is analyzing the most
important information for classification (which is called Principle Components, PCs) among the vectors,
then projecting the vectors to the PCs and getting a lower dimension vector. The lower dimension
vectors remain the classification-useful information and throw classification-useless information. So,
by comparing distances between lower dimension vectors, we can more efficiently cluster the original
vectors. We briefly describe it below, and the detailed description is available in any AI or digital image
processing book (i.e.[3]).

Suppose we have random m-dimension vector population d, where ~d = (d1, d2, · · · , dm)T . We
make n independent observations of d: ~d1, ~d2, · · · , ~dn, and compute the mean of the population ~d as:
~µd = E(~d) = 1

n

∑n
i=1

~di. So, the covariance matrix of the same data set is:

Cd = E{(~d− ~µd)(~d− ~µd)T }

For symmetry matrix like covariance matrix, we can compute the eigen-vectors and eigen-values of
matrix Cd based on the characteristic equation: |Cd − λI| = 0. By ordering the eigen-vectors in the
order of descending eigen-values (largest first), one can create an ordered orthogonal basis with the
first eigen-vector having the direction of largest variance of the data. The eigen-values / eigen-vectors
of covariance matrix have the feature that very small number of the eigen-values (i.e. 10%) add up to
more than α% (i.e. 95%) of the sum of all eigen-values. And also the “large eigen-vector” (or a linear
combination of several “large eigen-vectors”) represents a typical cluster. We call the corresponding
eigen-vectors of largest α% eigen-values (“large eigen-vectors”) the Principle Components (PCs) of the
random population ~d. Suppose we select k PCs of Cd : A = (~c1,~c2, · · · ,~ck)T , then an observation of ~d
can be represent as:

~d = AT ~y + ~µd, where ~y = A(~d− ~µd)

with little useful information loss. Compared with ~d, ~y is a lower dimension vector which retains
information useful for classification while removes useless information and noise in original ~d. The
distance between the ~y’s can represent the distance between the ~d’s.

8



Now, we illustrate how the PCA is applied to cluster the landmarks. We evenly cut the ID space
into m bins, we can compute the distance matrix in ID space as:

D = {dij}i,j=1,··· ,m

Where dij is the ID space distance between i-th bin and j-th bin.
We do PCA on matrix D, then we get principle component matrix A. For each ID space distance

vector ~di (i = 1, · · · ,m), compute its lower dimension vector ~yi. For each network distance vector ~d′
j

also compute its corresponding lower dimension vector ~y′
j . We put network node j to the i0-th bin in

ID space, if
‖~yi0 ,

~y′
j‖ = min

i=1,··· ,n
‖~yi, ~y′

j‖

where ‖ ·‖ represents the vector distance. We use the “angle” between two vectors as “vector distance”.
Thus, we put the m network landmarks to the m bins in the ID space. Notice that some bins may

have no landmarks while others may have more than one. It is easy to cluster landmarks in the nearby
bins together using unsupervised learning method in AI. For example, we cluster m network landmarks
into b clusters:

{{landmarki1,1 , landmarki1,2 , · · · }{landmarki2,1 , landmarki2,2 , · · · } · · · {landmarkib,1
, landmarkib,2

, · · · }}

where the landmarks above are ordered according to the bin where it is put, and each landmark is in
charge of 1/m ID space.

From each cluster, we select one landmark as its representative “level-1 landmark”. All landmarks
in the same cluster is called a cluster of “level-2 landmarks”. It is obvious RTTs between a host to
“level-1 landmarks” represent its global location in the Internet. The “level-2 landmarks” in the same
cluster is analogous to landmarks in the same AS. Once we know which cluster a host belongs to, the
the RTT to “level-2 landmarks” in that cluster represents its local location in that AS.

We conclude the alignment of the initial m landmarks in the ID space have following features:

• Landmarks near each other are put in ID space near each other.

• For each landmark, its distance vector in actual network and its distance vector in ID space are
well matched. Thus, its location in ID space is a good represent of its location in the actual
network.

• The approach above can be applied in either 1-dimension ID space or multi-dimension ID space
as long as the “distance” in ID space can be defined.

3.2 Compute ID for a Node

Suppose we have b “level-1 landmarks” and each cluster averagely has l “level-2 landmarks”. When
a new node wants to join the network, it first measures RTTs to the “level-1 landmarks” and get a
network distance vector ~XL1 = {x1, · · · , xb}. Since we also know the distance matrix L1 of “level-1
landmarks”, so we put this node in the b0-th cluster, if

‖ ~L1b0 ,
~XL1‖ = min

i=1,··· ,b
‖ ~L1i, ~XL1‖

With b0, we get the b0-th local cluster of “level-2 landmarks” with distance matrix L2b0 . This node
then measures its RTTs to all these “level-2 landmarks” and gets a vector ~XL2. Similarly to level-1, it
computes its nearest local landmark l0 and put itself at a position near l0 in ID space. Suppose the ID
space the l0-th “level-2 landmark” in charge of is [ID1, ID2], the newly joined node randomly gets ID
between [ID1, ID2].

The overhead of newly joined node for getting ID is b+l RTT measurements and b+l vector distance
computation, which is very low.

9



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0  100  200  300  400  500  600

C
um

ul
at

iv
e 

nu
m

be
r o

f n
od

es

Latency

Figure 11: Latency CDF of the
transit-stub topology

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300

La
te

nc
y

Interval on ID circle (number of nodes)

After reordering, 10% and 90%
Before reordering, average

Figure 12: Latency as function of
node interval on the ID circle

 0

 100

 200

 300

 400

 500

 600

 0  1  2  3  4  5

C
um

ul
at

iv
e 

nu
m

be
r o

f n
od

es

Load (times 1/600)

Random overlay construction
Topo-aware overlay construction

Figure 13: CDF of load (length
of ID interval) on each node.

3.3 Experiment results

We ran the overlay construction algorithm on a 600 node transit-stub network. The CDF of latency
distribution is shown in figure 11. 50 random nodes in the network are selected as landmarks. The
algorithm picks 6 of them as level-1 landmarks and each of the remaining is assigned to one of the 6 as
level-2 landmarks. Figure 12 shows the average latency as a function of the number of nodes between
the two nodes on the ID circle, using the topology-aware overlay construction algorithm and random
construction. It shows that the algorithm effectively assigns near IDs to nearby nodes in the network.
The average latency between two adjacent nodes on the ID circle is 141, 61% of the whole-network
average 230. Figure 13 shows the CDF of load (length of ID range) of the nodes. The loads are less
balanced than the random case, but still pretty good.

Finally, we simulated 10,000 lookups on this network, using finger-only routing, without server-
selection. Results are shown in the following table. Stretch is reduced by 22%. This shows that
using pretty simple topology-aware overlay construction, we can achieve significant reduction in lookup
stretch.

Construction Method Path Len Stretch
Random 4.45 2.73

Topology-aware 4.3 2.14

References

[1] Castro, M., Druschel, P., Hu, Y. C., and Rowstron, A. Exploiting network proximity in
peer-to-peer overlay networks. Tech. Rep. MSR-TR-2002-82, Microsoft Research, 2002.

[2] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. Wide-area cooper-
ative storage with CFS. In Proc. of ACM SOSP (2001).

[3] Gonzalez, R. C., and Woods, R. E. Digital image processing. 1992.

[4] Hildrum, K., Kubiatowicz, J., Rao, S., and Zhao, B. Distributed data location in a dynamic
network. In Proc. of ACM SPAA (2002).

[5] MIT Chord implementation. http://www.pdos.lcs.mit.edu/chord/.

[6] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. A scalable
content-addressable network. In Proceedings of SIGCOMM (August 2001), ACM.

[7] Ratnasamy, S., Shenker, S., and Stoica, I. Routing algorithms for DHTs: Some open
questions. In Proc. of IPTPS (2002).

10



[8] Rhea, S., Roscoe, T., and Kubiatowicz, J. Structured peer-to-peer overlays need application-
driven benchmarks. In Proc. of IPTPS (2003).

[9] Rowstron, A., and Druschel, P. Pastry: Scalable, distributed object location and routing for
large scale peer-to-peer systems. In Proc. of IFIP/ACM Middleware (November 2001).

[10] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord: A
scalable peer-to-peer lookup service for Internet applications. In Proceedings of SIGCOMM (2001).

[11] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M. F., Dabek, F.,
and Balakrishnan, H. Chord: A scalable peer-to-peer lookup service for internet applications.
Tech. rep., Massachusetts Institute of Technology, 2002.

[12] Zhao, B. Y., Duan, Y., Huang, L., Joseph, A., and Kubiatowicz., J. Brocade: Landmark
routing on overlay networks. In Proc. of IPTPS (2002).

11


