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Abstract

The Resource Constrained Cache-Affinity Scheduling prob-
lem is defined. It is practically useful in computer operating systems,
where the problem models the scheduling of segments(tasks) from dif-
ferent threads(jobs) to minimize cache-filling cost. The problem is
shown to be NP-Complete. A dynamic programming algorithm is pre-
sented that solves the optimization problem in O(n2rn) time, where
n is number of jobs and r number of tasks per job. This is a sig-
nificant improvement over the naive O( (rn)!

(r!)n ) algorithm. Three greedy
heuristic algorithms are presented and evaluated via simulation. In the
experiments, the heuristic algorithms perform significant better than
traditional non-cache-affinity scheduling methods.

1 Background

Suppose we are able to produce a graph of the structure of each thread in a
program. The graph can hopefully be used to help the process-local thread
scheduler to do better scheduling. The environment we are targeting at
is highly concurrent CPU and/or I/O intensive applications which process
a lot of repetitive tasks. Typical examples include Web/application/email
servers. In this graph, edges represent non-preemptive code segments, while
vertices represent blocking points due to I/O calls or voluntary yields. Each
task starts at s and ends at t. Assuming uni-processing, at any moment
there is at most one thread running on one of the edges. When it reaches
the next vertex, it blocks for a certain period of time and the scheduler gets
a chance to reschedule a new thread to run. At that moment, there can
be thousands of runnable and un-runnable threads waiting at the vertices.
The scheduler has to choose one runnable thread now waiting at one vertex
to run. We call this graph a blocking graph and a scheduler exploiting this
graph a graph-based thread scheduler.
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Figure 1 is a simple blocking graph, where edges are annotated with
branching probability. Figure 2 is a graph we obtained from Apache 2 web
server, using runtime profiling. It represents the main part of processing a
HTTP GET request.
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Figure 1: A blocking graph

Figure 2: Blocking graph of threaded Apached 2 web server

Given the graph G and various knowledge about the system, our goal is
to find a scheduling policy that maximize throughput and maintain
acceptable response time. We can possibly obtain the following knowl-
edge about the graph to aid the scheduler, either through static analysis or
runtime profiling. The behavior of the system is random. So these values
are averages.

• p(e): The probability of the thread taking each branch (edge) at each
vertex.

• t(v): Average blocking time of threads at a certain vertex.
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• M(e), m(e): Memory usage of an edge, with M(e) being the maximum
resource used during the edge, and m(e) being the relative resource
usage change after the edge.

• S(e1, e2): Data cache / instruction cache affinity, represented by the
cost to fill the cache when switching from one edge to another edge to
run.

• M0: Total available memory.

We consider only the single processor version of the problem. In this
case, the edges from different threads are executed one after each other on
the processor. If we take each edge as a separate task, the constraints that
limit our selection of schedule are the precedence ordering of these tasks
and the memory consumption limit. Our goal in the problem would be to
minimize the total run time of a fixed amount of jobs. That goal directly
translates to minimizing the cost of cache misses, because that is the only
point where the ordering matters. The problem is formulated mathemati-
cally in the next section.

In the operating systems context, recent work on batch scheduling in
staged event-driven architecture[6], cohort scheduling [4] and affinity scheduling[2]
approaches the same problem in a coarser-grained way. Only the different
costs between scheduling the same edge and a different edge are considered.
So the scheduler schedule as many threads as possible that are running the
same piece of code one after each other. In [5], Philbin et al. proposed a
practical scheduling algorithm to improve cache locality of sequential pro-
grams by scheduling fine-grained threads. However, their targeted area was
mostly cpu-intensive scientific applications.

2 Problem Formulation

Here we formulate the problem mathematically. We discuss assumptions
and their implications in the next sub-section.

Definition 1 Resource Constrained Cache-Affinity Scheduling(RCCAS)
There are n independent jobs R1, ..., Rn to be processed on a single machine.
Each job Ri consists of |Ri| tasks ri

1, r
i
2, ..., r

i
|Ri|, which have to be completed

sequentially. A schedule π = π(1), ..., π(
∑n

i=1 |Ri|) is a permutation of all
ri
j that satisfies,
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(a) Resource constraint, ∀k0,
∑k0

k=1 m(π(k)) ≤ M . m(ri
j) is the amount

of system resource allocated by that task, negative if the task frees
resource. Naturally, a job frees all resource when it finishes, i.e.
∀i,

∑|Ri|
j=1 m(ri

j) = 0.

(b) Ordering constraint, ∀i, j1 < j2, if π(k1) = ri
j1

and π(k2) = ri
j2

, then
k1 < k2.

The cost of the schedule is defined by,

cost(π) =
|π|∑

k=2

C(π(k − 1), π(k))

where C is a |π| × |π| matrix.
Question: does there exist a schedule that has a cost at most c?

Basically this is a static and limited version of the problem stated in
section 1. Each task corresponds to an edge in the blocking graph and a
job is a path from s to t in the blocking graph. Instead of representing the
composition of different threads using branching probabilities in the graph,
we statically specifies the tasks in each job(thread). Therefore we do not
have the blocking graph in this problem formulation. Notice two tasks from
certain two jobs can possibly be the same task, i.e. ri

j = ri′
j′ , i 6= i′. This

corresponds to the case when two threads go throught the same edge in the
blocking graph.

An alternative and more general way of representing the structure of
jobs is to treat each task as a separate job and use a precendence graph
to constrain their ordering. But for this particular problem, the two level
job-task approach seems more natural.

The task-switching cost defined herein is called sequence-dependent setup
times in scheduling terminology. In the notation of Graham, Lawler, Lenstra
and Rinnooy Kan [1], the optimizing version of our problem is a more con-
trained version of 1|prec, Sjk|Cmax, i.e. a single machine(1 in the notation),
precedence constrained scheduling(prec) problem with sequence-dependent
setup time(Sjk) and the goal being minimizing makespan (Cmax), i.e. the
time between the start of first job and the finish of last job. However, the
resource constraint in our problem is not categorized by [1] or other work
known to use.

Two similar problem in the literature that we are aware of is the cache
scheduling problem [3] and paging problem. In the cache scheduling problem,
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we are given a cache of k pages, a memory of m pages and a number of non-
dividable jobs each having a different memory working set that has to be
loaded into the cache before it starts. The cache-filling cost is proportional
to the number pages to be loaded. The question is whether we can find
a schedule of the jobs that has cache filling cost below a given value. In
comparison to RCCAS, it treats jobs as undividable wholes instead of a
sequence of schedulable tasks, and there is no resource constraint considered.
However, it captures the behavior of cache memories in more details than
RCCAS in that it uses working set of jobs instead of switching cost between
tasks. The paging problem considers a cache of k pages, and a secondary
storage of m pages. Then a sequence of memory page access is presented,
one at a time. A paging algorithm needs to decide at each step which one of
the k pages in the cache to discard in order to make room for the new page,
if the page in not already in the cache.

2.1 Assumptions

It is clear that Resource Constrained Cache-Affinity Scheduling is
not a direct capture of our real-world problem in Section 1. A couple of (un-
realistic) assumptions are made to simplify the problem. These assumptions
are often not true in real environments. We discuss their implications and
possible work-arounds here. This serves as the validation for our problem
formulation.

• All jobs are static, deterministic and known by the scheduler at the
very beginning. All jobs are assumed to be available at time 0. These
assumptions are false for an online scheduler. In other words, in real
world we naturally want online scheduling algorithms that make de-
cisions based on partial(past and current) knowledge of the system.
Obviously that makes the problem much harder. Fortunately, static
algorithms discussed here can still be useful or even better in some
cases. For example, we can process the continously arriving jobs in
batches, i.e. run the static algorithm at certain intervals and schedule
all jobs waiting for execution together. In cases where throughput is
more important than latency, this can be more favarable than schedul-
ing jobs whenever they arrive because we can possibly achieve lower
average cache cost and improve throughput.

• The cost to fill the cache only depends on the previous task scheduled.
Actually the cost depends on the current content in the cache, which
is determined by the full history of tasks scheduled. However, if the
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tasks are “large” enough both in terms of code length and data access
amount, this assumption will be a good approximation.

• The resource limit is hard. If the resource is memory, in real systems
with virtual memory, this limit is indeed soft. Exceeding the nor-
mal memory limit will be possible but result in degraded performance
because of paging.

• The maximum resource usage of a task is the same as the amount it
uses when it finishes. This is not true in general, a task can allocate
a lot of resource and free it before finishing. Therefore schedules gen-
erated by algorithms here may be actually infeasible. However, one
workaround to get a feasible and generally good schedule is to reserve
enough resource for all such “temporary” resource usage and rerun the
algorithm.

3 Resource Constrained Cache-Affinity Schedul-

ing is NP-complete

Theorem 2 Resource Constrained Cache-Affinity Scheduling is
NP-complete.

Proof: The problem is a generalization of the classic scheduling problem
with sequence dependent setup times problem (1|Sjk|Cmax). If we set the
resource constraints to ∞ and let each job contain only one task, then our
problem becomes 1|Sjk|Cmax. The latter problem is easily shown to be NP-
complete by doing a reduction from TSP. Given a TSP problem on graph
G = (V,E), construct a scheduling problem with n jobs and let and Sjk be
the edge lengths in TSP. Then the cost of any schedule will be same as its
corresponding tour in the TSP.

Knowing that the problem is NP-complete, we do not attempt to find
a polynomial algorithm that produces optimal solution to the correspond-
ing optimization problem Min Resource Constrained Cache-Affinity
Scheduling. In the following sections, we first present a dynamic program-
ming algorithm that gives the optimal solution. Although having exponen-
tial running time, it is still a significant improvement over the naive method.
And its results serve as standards to compare other scheduling algorithms
against. Then we present a series of heuristic algorithms. We are not able
to analyze lower-bound performance of any of them. Instead we conduct
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experiments to study their performance for different inputs, compared with
the optimal solutions.

4 A Dynamic Programming Algorithm

In order to derive a dynamic programming algorithm for the problem. We
observe that an optimal schedule has the following property.

Claim 3 Suppose the optimal schedule is π. Then any prefix of π, π(1...k) =
{π(1), ..., π(k)} is also the optimal schedule for the same set of tasks with
the additional constraint that π(k) must be the last task scheduled. We call
the corresponding optimization problem of the subset a sub-problem.

Proof: From the definition of cost, we see that cost(π) = cost(π(1...k))+
C(π(k), π(k + 1)) + cost(π(k + 1...|π|)). If we fix the second part of the
schedule from π(k) to π(|π|), then the last two terms in the equation above
remain the same. We know that for the optimal schedule, any change will
only increase or do not change the cost. Notice that any schedule of the sub-
problem satisfying the resource constraint will result in a valid schedule of
the whole problem, because resource consumption after the sub-problem is
done does not depend on the internal schedule of the sub-problem. Therefore
any valid schedule of the sub-probblem will have cost larger or equal to
cost(π(1...k)). Thus by definition, {π(1)...π(k)} is the optimal schedule for
the sub-problem.

With this definition of sub-problems, we can iterate over k and do dy-
namic program. During each step, we generate optimal schedule for all
possible schedule prefixes of length k with all possible last task, based on
results of the last step. With precedence constraints of our problem, we do
this by build a table of cs(k, S, p) for each k, defined as follows,

cs(k, S, p) = optimal cost of schedule in which job i has finished Si tasks
(S is a vector n non-negative integers, S = {Si}i=1,··· ,n) and
job p is the last job just scheduled. We have

∑
Si = k and

1 ≤ p ≤ n.

This table essentially lists optimal costs for all cases, because each S
vector corresponds to a possible state of progress made so far for all jobs. The
values of cs(k, S, p) are obtained from the ones in the last step (cs(k−1, S, p)
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as follows,

cs(k, S, p) = Min{cs(k − 1, S′, p′) + C(rp′

S′
p′

, rp
Sp

) | p′ = 1..n},

where S′
i =

{
Si, i 6= p

Si − 1, i = p

When the table for the last task (k0 =
∑
|Ri|) is obtained, the minimal

cost c0 of the whole problem can be obtained by,

c0 = Min{cs(k0, S, p) | 1 ≤ p ≤ n}

Now consider the running time of the algorithm. The total number of
cases we have to generate is n

∏n
i=1(|Ri| + 1). This is because we are gen-

erating all prefixes in which job Ri can complete 0, 1, .., |Ri| tasks. Thus
total number of prefixes is

∏n
i=1(|Ri|+ 1). And for each prefix, there are at

most n cases, with the last job scheduled being 1..n. In order to generate
each case, we look at n previous cases and find a minimum. Thus it needs n
step. Suppose r is the average length of each job. Then, the algorithm takes
O(n2

∏n
i=1(|Ri| + 1)) = O(n2rn) steps. For the naive approach of enumer-

ating all schedules, the running time is O( (rn)!
(r!)n ), because it is equivalent to

the experiment of putting n different sets of balls, each containing r balls in
the same color, in a line. Compared with the naive algorithm, the dynamic
programming algorithm is a significant improvement.

5 Heuristic Algorithms

Here we present three simple and similar heuristic algorithms for this prob-
lem. Although they are still designed for the static version of the problem,
it is easy to adapt them for the dynamic version in which jobs arrive contin-
uously, because these algorithms make decision for each time independently.

The algorithms work greedily: at each time, they examine the situation
and select a next job to schedule, go to the next time point and never back-
track. The selection of the next job is done with the simple heuristic of least
cache-filling cost from current task1. If multiple jobs have the same cost,
the winner is selected randomly to avoid always selecting the same one.
Although simple, it turns out that this heuristic can still perform much
better than traditional non-cache-affinity-aware thread/process schedulers.

1Trying more sophisticated heuristics is left as future work
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However, the above discussion does not consider the resource constraint.
Because we do not back-track, greedy selection of the most affine task (the
one having least switching cost from current task) will possibly lead us to
dead ends where we use up all resource and cannot finish the jobs. Even if
that does not happen, using too much resource will force us to make bad
choices because a more affine task may need too much resource than we
have free and cannot be scheduled. This will produce sub-optmal schedules.
Therefore we introduce an “admission control” mechanism into some of our
algorithms. At any time we only select the next job from a set of “runnable”
jobs that have been admitted and are not finished. The other addition
is when we select the next task, we use knowledge of current and future
resource requirements of jobs to make sure that we do not exhaust resource
in the future (discussed shortly).

The first algorithm, greedy aggressive, does not do any admission control.
It looks at every job for the next task each time. However, to ensure the gen-
eration of a feasible schedule, it “reserves” some resource, with the amount
being enough for any single job to complete, i.e. the maximum amount of
resource any job may possibly allocate in the future. This amount, mres(k)
for time k, is calculated as follows,

Let mcur(i, j) be the amount of resource job i is using after completing its
jth task. mcur(i, j) =

∑j
j′=1 m(ri

j′). We introduce a new value mmax(i, j)
to be the maximum amount of resource it will use in the future after the
completion of its jth task. We have mmax(i, j) = Max{mcur(i, j′)|j′ =
j..|Ri|}. Refer to figure 3 for the relationship between mcur and mmax.
mmax is a useful property of the job in that we can use it to pre-allocate
resource for the job. Then the reservation resource amount mres(k) is,

mres(k) = Max{mmax(i, ji
k)−mcur(i, ji

k)|i = 1..n}

After getting mres(k), the scheduling decision is made in the following
way. 1) If there is any next task that does not need to use the reserved
resource, then select the most affine task within all these tasks. 2) If all
incompleted jobs need to use the reserved resource, then select the job that
currently uses most resource and keep executing it until the first condition
holds again or it finishes. Then go to 1 or 2 respectively.

The second algorithm, greedy conservative, admits new jobs very con-
servatively and make sure resource is always enough. At any time, every
job not in “runnable” set is examined to see if its maximum possible re-
source usage added to the current total maximum resource usage of all jobs
in runnable exceeds total resource. Again, we use mmax as the amount of
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Figure 3: Calculation of mmax from mcur

resource each job will need in the future. For each Ri /∈ runnable, we check
whether mmax(i, 0)+

∑
i′∈runnablemmax(i′, ji′

k ) ≤ M . If it is true, then we
admit the job into the runnable set. It is easy to see that with this conser-
vative admission control, the algorithm is free to choose any job as next job
when making scheduling decisions and “reservation” is not necessary.

The third algorithm, greedy predictive, trys to be neither too conservative
nor too aggressive. We observe that “admission control” is generally useful
because getting into resource scarcity and be forced to execute a single job,
as in 2nd case of algorithm 1, is sub-optimal. But the admission control of
the second algorithm is too conservative in a lot of cases, because maximum
resource usage is only achieved at one or a few points in the job’s life time.
Intuitively, the k̂−median of a job’s resource usage will be better estimation
of the average resource requirement of the job than the maximum value. We
use this in algorithm 3, with k̂ being a parameter that we set to 1

3n in our
experiments. Notice that with this admission control policy, we need to
do reservation of resource just as in algorithm 1 because now we are not
guaranteed to generate a feasible schedule by greedily next job selection.

The time complexity of these algorithms are low. Basically to make
greedy decision for each step, O(n) steps are needed. It also takes O(n)
to calculate the resource reservation amount, with mmax and mcur precom-
puted once in O(rn) time. Therefore, overall time complexity for all three
algorithms are O(rn2).
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6 Experiments

In this section we present simulation results of the algorithms on several syn-
thesized problems. An alternative way of evaluating the algorithms is to run
them on problems extracted from real programs and environments. How-
ever, due to time limit, we have not been able to get these potentially more
useful problems. Instead, we hand-picked several problems corresponding
to extreme or typical “topology” of the blocking graph described in Sec-
tion 1, in the hope that these experiments will show overall performance
and pecularities of the algorithms.

We ran all algorithms on 3 problems,

(a) Single: 6 copies of a single kind of job containing 6 tasks (numbered
task 1 to 6). Switching cost between two tasks is set up as: 0 between
the same task, 1 between adjacent tasks (1 to 2, 5 to 4 etc) and 2
otherwise. Resource allocation amount of the tasks are 1, 2, 4, 13, -13,
-7.

(b) Multiple: 3 copies of job A and 3 copies of job B. A is longer (7 tasks)
and uses more resource (max 20). B is shorter (4 tasks) and uses less
resource (max 4). The switching cost set up is the same with single.

(c) Random: 6 different jobs. Each task has random total resource con-
sumption uniformly distributed between 0 to 20. The switching cost is
the same with single except that for not adjacent/same tasks the cost
is not 2, but a random value uniformly distributed between 1 and 3.

Intuitively single models scheduling a lot of jobs of the same kind. Mul-
tiple models a mixture of longer and shorter jobs. Random models more
complex situation when every job is different.

Figure 4 shows the results of different algorithms on single. X axis is the
amount of total resource. Y axis is the cost of the schedule. We compare
the three heuristic algorithms to run-to-completion, in which the next job
starts after the current one finishes all its tasks, and round-robin, which
is a simple round-robin scheduler that always execute the next task of the
next job after the current task finishes, without knowledge of cache-affinity.
Optimal shows the result of the global optimal schedule obtained with the
dynamic-programming algorithm.

For single, it is shown that all three heuristic algorithms generate near-
optimal schedules. This is partly because the problem matches our cache-
affinity heuristic well. Apart from same tasks and adjacent tasks, all other
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Figure 4: Cost of different algorithms on single

tasks have same switching cost. There are few cases when a greedy choice is a
terrible choice in this problem. Also shown is that aggressive and predictive
perform better than round-robin and all three much better than run-to-
completion. This is not surprising. Moreover, round-robin is somewhat
favored here because the fact that all jobs are available for scheduling at
the same time results in round-robin generating pretty similar schedules to
the heuristic algorithms. Without this unreal assumption, we expect the
heuristic algorithms to perform much better than round-robin.

Multiple, shown in figure 5, gives similar results showing the heuristic
algorithms perform better than run-to-completion and round-robin. One
surprising thing shown in this figure is that conservative tends to perform
better than aggressive and predictive when total resource is low. Although
both this experiment and the next one show this pheonomenon, we conjec-
ture that this is only an artifact of our experiment setup and will not be
true for longer (containing more tasks) jobs whose tasks have more diver-
sified resource requirement, because in those cases accepting jobs by their
maximum resource requirement will result in too much loss in concurrency.
This is left as future work to be done after we optimize our dynamic pro-
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Figure 5: Cost of different algorithms on multiple

gramming algorithm to solve larger problems.
The results for Random is shown in figure 6. Here round-robin performs

much worse because each job is different and the round-robin schedule has
no more locality than run-to-completion. When resource is enough, the
costs of schedules generated by the heuristic algorithms are 63% of that of
round-robin and 131% of the optimal. Therefore, for the random case, the
algorithms provide a pretty good improvement over traditional non-cache-
affinity scheduling algorithms.

7 Conclusion

We defined the RCCAS problem and showed its NP-completeness. We pre-
sented a dynamic programming algorithm producing optimal solutions for
the optimization problem. We also presented three greedy algorithms which
are shown to perform better than traditional non-cache-affinity aware sched-
ulers in our simulations.
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