
Fall 2003 CS263 Course Project

Survey: Race Detection and Atomicity Checking

Feng Zhou (zf@cs.berkeley.edu)

December 16, 2003

1 Introduction

Concurrent programs are hard to write and debug because of the inherent concurrency and
indeterminism. Bugs in these programs are often hard to find in the testing process. When
they do show up later in production systems, they are not easy to pinpoint because a lot of them
are hard to reproduce. Therefore, automated tools that are able to find these bugs are of great
value in relieving programmers from identifying these bugs manually. In this paper we survey
some of the recent work in this area, focusing on static language-based tools that do not actually
run the application. Static tools have the benefit of considering different execution paths more
exhaustively and can potentially be sound, i.e. being able to prove the bug-freeness of programs.

Apart from static tools, other kinds of concurrency bug finding tools include dynamic tools
and post-mortem tools. Dynamic tools, e.g. Eraser [8], tracks program execution and report
potential concurrency bugs if the program does not follow certain concurrency control disciplines
(e.g. locking). These tools often produce relevant results with low false positive rate. But they
cannot possibly cover all execution paths and therefore cannot be sound. Post mortem tools
detect bugs by analyzing execution traces collected during execution. Although they introduces
less overhead than dynamic tools, they still suffer the same limitations.

Concurrency bugs can be of several forms. The most extensively studied one is race conditions.
Races occur when shared variables are accessed concurrently by multiple threads of control, at
least one of them doing a write, without proper synchronization. The final values of the variables
will depend on the interleaving of the threads and thus normal assumptions of serial programming,
essentially that a variable will not change value if the current thread does not change it, do not
hold any more. If the programmer make use of these assumptions, insidious bugs are introduced.
However, it is important to note that not all races cause bugs. Races can be benign if, e.g. only
reads of a single variable are done without synchronization, or if only increment and decrement
are done to a particular shared variable and hardware guarantees atomicity of these operations.

Races are actually only part of the reasons for so-called atomicity bugs [4]. In general,
atomicity bugs happen when the serial assumptions that the correctness of the program is based on
is broken. These assumptions can be broken even if no races exist. For example, lock(l); t = s;

unlock(l); t++; lock(l); s = t; unlock(l) will not be correct if the intended functionality
is to increment shared variable s, protected by lock l. It is easy to see that the result may be
wrong if more than one of these operations are interleaved.

Static tools for finding concurrency bugs include at least the following kinds, ordered roughly
from lightweight ones to heavyweight ones in terms of analysis complexity. 1) Type systems,
e.g. rccjava [3] and Java atomicity types[4]. They work by extending the type system of the
language with atomicity-related properties like thread-local, shared, “protected by lock l”, etc.
Code blocks or functions/methods also have concurrency properties defined so that the tools can

1



do type check to find out any inconsistency among them. The extended types can either be
provided by the programmer using annotations or inferred by the tools. 2) Program analysis

tools, e.g. Warlock[9] and RacerX[7]. These two tools do inter-procedural analysis and tracks the
locking behavior of programs to find inconsistencies. Compared to type systems, program analysis
tools often requires less annotation because the tools do more inference. 3) Model checking

tools, e.g. Java Pathfinder [10] and Bandera [1]. Model checking uses a simplified model of the
program and exhaustively tests it on all inputs. 4) Extended static checking [2] [5]. ESC uses
a theorem prover to find bugs in programs, including concurrency bugs. It can check stronger
properties than races.

Ways to ensure atomicity is studied extensively in the database community as the problem
of concurrency control . By introducing the notion of transactions, databases delimitate the
operations that it should keep atomic. Concurrency control mechanism ensure the isolation and
consistency 1 of transactions either through pessimistic locking, optimistic concurrency control or
timestamp based concurrency control . These mechanisms all work at runtime. They require that
the database engine has full knowledge of the data structures of the database, the operations in
each transactions and has full control of scheduling. In contrast, language-based detection of races
and atomicity bugs need to work on general programs without knowledge of how the program
works beforehand.

The rest of this survey is organized as follows. Section 2 discusses Race Condition Checker
for Java. Section 3 discusses the type and effect system for atomicity, the successor to rccjava.
Section 4 discusses RacerX [7], the program analysis tools for race conditions and deadlocks. And
discussion of methodologies and possible future work is in section 5.

2 Type-based Race Detection

2.1 Rccjava Overview

The race condition checker for Java (rccjava) supports the locking style of programming to prevent
race conditions, which are defined as unprotected accesses to shared variables. In order to verify
that the program is lock free, the type system,

1. associates a protecting lock with each field

2. tracks the set of locks held at each program point

Note that in general the locks held at a particular program point can be arbitrarily different
each time the program counter is at the point. However, for the Java programming language,
because locking is integrated into the language, locking and unlocking must come in pairs and
each pair forms a block. Therefore the locksets at each program point will be the same if they
are the same at the entrance of methods. Thus the lockset tracking problem is simplified.

The type system relies on the programmer to aid the type checker by providing annota-
tions about the additional type information, as well as by some common default values to
lessen the annotation burden on programmers. The following is a simple program written in
ConcurrentJava[3], a multithreaded Java subset, to illustrate the use of annotations.

class Account {

int balance guarded_by this = 0

int deposit1(int x) {

1Note that the word “atomicity” is used to refer to another property in databases, i.e. the all-or-nothing property
of actions in case of program or system crashes. “Atomicity” in this surveys and [4] refers to isolation in database
term.

2



synchronized this in {

this.balance = this.balance + x

}

}

int deposit2(int x) requires this {

this.balance = this.balance + x

}

}

let Account a = new Account in {

fork { a.deposit1(10) }

fork { synchronized a in a.deposit2(10) }

}

The meaning of the annotations should be straight-forward from the example. The guarded by

annotation declares a field to be protected by the lock of an object (just as in Java, every object
has an associated lock with it in ConcurrentJava. In this example, every access to the field
balance must be protected by the lock of this. The requires annotation declares a method
to be called with at least the declared locks to be held. In this example, the deposit2 method
should be called with lock this held but deposit1 requires no lock.

2.2 Types for Race Detection

The type check in rccjava is done on a per-method basis. Every method is checked independently
and the type checker only needs to check every function once.

We use the same extension to ConcurrentJava, RaceFreeJava, as in [3] to illustrate the
idea of a type system for race detecting. The extension to ConcurrentJava for race detection
is the following,

field ::= [final]opt t fd guarded by l = e

meth ::= t mn(arg*) requires ls { e }

ls ::= l∗

l ::= e

Note ls is a lock set and l is a single lock. Built on top of these annotations, the core of the type
system is the typing rules. Figure 1 shows a set of most important rules.

These rules all reason about the type judgement,

P ;E; ls ` e : t

where P is the program, E is the environment and ls is the current lock set, i.e. the locks held at
the current program point. The rules check for correct type of every expression e of the program.
The rule EXP FORK states that fork does not inherit parent’s lock set. The rule EXP SYNC means
the synchronized statement adds one item to the current lock set. Similarly, EXP REF and EXP

ASSIGN requires that access to a shared field should be done with the required lock held. Note all
this instances in the required lock is replaced with the current object e ([e/this]l) before looking
it up in the current lock set. This enables the use of the keyword this in the guarded by clause.
Apart from this simple alias resolution, the expression in guarded by should be final, i.e. a fixed
object. This limitation is addressed by an extension discussed later. EXP INVOKE verifies that a
method is invoked with the required locks held.

3



[EXP FORK]

P ;E; ∅ ` e : t

P ;E; ls ` fork e : int

[EXP SYNC]

P ;E `final e1 : c P ;E; ls ∪ {e1} ` e2 : t

P ;E; ls ` synchronized e1 in e2 : t

[EXP REF]

P ;E; ls ` e : c

P ;E ` ([final]opt t fd guarded by l = e′) ∈ c

P ;E ` [e/this]l ∈ ls

P ;E ` [e/this]t

P ;E; ls ` e.fd : [e/this]t

[EXP ASSIGN]

P ;E; ls ` e : c

P ;E;` (t fd guarded by l = e′′) ∈ c

P ;E ` [e/this]l ∈ ls

P ;E; ls ` e′ : [e/this]t

P ;E; ls ` e.fd = e′ : [e/this]t

[EXP INVOKE]

P ;E; ls1 ` e : c

P ;E ` (t mn(sj yj∈1···n

j ) requires ls2{e
′}) ∈ c

P ;E; lsj ` ej : [e/this]sj

P ;E ` [e/this]ls2 ⊆ ls1

P ;E ` [e/this]t

P ;E; ls1 ` e.mn(e1···n) : [e/this]t

Figure 1: Type Rules of RaceFreeJava

2.3 External Locks

RaceFreeJava requires all lock expressions to be either final or final fields of this. This will not
work for complex locking schemes. For example, data structures like trees often has a single lock
for the whole tree while every node is a separate object. In rccjava, this is handled by introducing
ghost parameters to class definitions. Class declaration and instantiation with ghost parameters
have the following form.

class cn < ghost t1 x1, · · · , ghost tn xn > body

class cn < l1, · · · , ln > [l1/x1, · · · , ln/xn]body

The type check for classes with ghost parameters are done by substitution. Thus this
mechanism works a little bit like templates. Note also that the actual ghost parameters must
be final. It can also refer to this which is the object containing the field.

For an example of the usage of using ghost parameters to specify external locks, see [3].

4



2.4 Thread-local Classes

One problem with RaceFreeJava is every field needs to be annotated because the type checker
assumes all fields can be accessed by multiple threads. In real programs, apart from local(on-
stack) variables, a lot of object referenced by fields are also accessed by one only thread and
thus requires no locking. By extending the type system to support these thread-local classes, not
only number of annotations will be reduced, but also thread-local access can be enforced by the
type checker. The latter is achieved in rccjava using a form of escape analysis. Basically thread-
local objects should not be accessible from any thread-shared objects. Therefore thread-shared
classes must only have thread-shared super-class and must only contain shareable fields. However,
thread-local classes is allowed to have thread-shared super-classes. Anyway the Object class is
thread-shared.

In order to preserved the single-thread guarantee of thread-local classes, limitations need to
be made to up and down casts of thread-local classes. In rccjava, thread-local classes are not
allowed to override methods of any shared super-class. And downcasts from shared super classes
to thread-local sub-classes are forbidden. Note that the downcast limit may be too much for a lot
of applications. This basically forbids downcasts from Object to any thread-local classes. This
means thread-local classes cannot be put into collection classes like ArrayList and HashMap.

2.5 Implementation Issues

Implementing these typing rules will result in a working type checker. But it will still require
too many annotations and produce too many spurious warnings to be useful. Therefore, rccjava
employees two techniques to alleviate these problems. One is to support a number of escape
pragmas to suppress certain kinds of warnings at certain places. This makes the type system
unsound. But practically, it does not prevent the tools from being a useful bug-finding tool. The
other technique is to support a number of default annotation rules, e.g., unguarded non-final
instance fields in thread-shared classes are guarded by this. These rules do not change the type
system at all, but makes a big difference for the usability of the tool.

Rccjava has been reported [3] to be applied to Java library classes and several small to medium
scale applications. It is reported that fewer than 20 annotations are required per 1000 lines of
code. And the annotations tend to be clustered on some classes manipulated from different
threads. One hour per 1000 thousand lines is the reported average annotation time, although it
should depends highly on the locking style of the program. Several races have been found in Java
library classes using rccjava.

3 Type-based Atomicity Checking

We already mentioned that race conditions are only part of the reasons for concurrency bugs and
we have seen an example of such a bug in the introduction part. We may be able to solve this
problem if we focus on the behavior of functions/methods when executed concurrently, instead of
how specific variables are accessed. The simplest case is memory read/write of a single word is
atomic on most hardware, and a series of accesses to variables protected by certain locks while
holding the locks are atomic. Thus operations and functions/methods can be classified as atomic
or non-atomic. Programmers normally have a pretty clear idea of what functions/methods are
intended to be atomic and what are not. So they can annotate functions/methods as atomic or
not.

This approach is taken in [4], which adds atomicity types to Java. The concurrent behavior of
operations and methods are called effects in this work. Therefore the type system is extended to

5



include both data types and effects of operations. The type checker verifies the declared atomicity
of methods are actually satisfied by the operations in the bodies of the methods.

3.1 The Theory of Movers

In order to reason about atomicity types, it is essential to introduce more levels of atomicity other
than atomic and non-atomic. The theory of movers by Lipton [6] is useful here. An action a is
a right mover is for any execution where the action a performed by one thread is immediately
followed by action b of another thread, these two actions can be swapped without affecting the
resulting state. Similarly we define a left mover to be an action a which can be swapped with any
action b immediate before it by another thread without affecting the resulting state. Concretely,
a locking operation is a right mover, because any operation by another thread immediately after
the locking operation cannot change any state protected by the lock and thus can be swapped
with the locking operation. Similarly, a unlocking operation is a left mover. An access to a shared
variable protected by lock l is both a right mover and a left mover because the lock is guaranteed
to be held by the type system.

Classifying certain operations as movers enables us to reason about atomicity properties of
methods. In particular, the following theorem holds,

Theorem. A method is atomic if it contains a sequence of right movers followed by a single
atomic action followed by a series of left movers.

The correctness of the theorem can be seen as follows. For any interleaved execution of the
method with any other actions of other threads, we can move the right movies of the method
to the right until they reach another right mover or the atomic action. And the left movers to
the left. In the end, this method will be executed without interleaving with actions from other
threads. These can be done without affecting the resulting state. Therefore, any interleaved
execution of this method always results in the same program state.

3.2 Types for Atomicity

The following atomicity types are defined in [4], ordered from the strongest atomicity to the
weakest.

• const: expressions whose evaluation does not depend on any state and does not change
state.

• mover: as defined above except that all movers are both left and right in Java.

• atomic: yields same resulting state independent of the interleaving with other threads

• cmpd: non of the above

• error: typing error

The atomicity of iterative closure α∗ is the same with that of α except for atomic, where a
series of atomic actions have atomicity cmpd. And sequential composition of α1 and α2 has the
weaker atomicity of the two, exception that two atomic expressions form a cmpd expression.

Atomicity of some operations depends on the locks held, e.g. accessing a shared field field is a
mover if the required lock is held or error otherwise. This is written as a conditional atomicity,

l?mover : error

6



3.3 Typing Rules

The atomicity type system is an extension of that of rccjava. Here we use the typing rules of
AtomicJava[4], an extension to ConcurrentJava to illustrate the type system. Some of the
interesting rules are listed below. They are all about the typing judgement, P ;E ` e : t&a, where
t is the normal data type of e and a is the atomicity of e.

[EXP WHILE]

P ;E ` e1 : int&a1 P ;E ` e2 : t&a2

P ;E ` while e1 e2 : int&(a1; (a2; a1)∗)

[EXP REF GUARD]

P ;E ` e : c&a
P ;E ` (t fd guarded by l = e′) ∈ c
b ≡ (l[this := e]?mover) P ;E ` b

P ;E ` e.fd : t&(a; b)

[EXP CALL]

P ;E ` e1 : t1&a1 t0 = c P ;E ` b[this := e0]
P ;E ` (b s mn(t1 y1, · · · , tn yn){e}) ∈ c

P ;E ` e0.mn(e1, · · · , en) : s&(a0; a1; · · · ; an; b[this := e0])

[EXP SYNC]

P ;E ` l : c&const P : E ` e : t&a

P ;E ` synchronized l e : t&S(l, a)

[EXP WHILE] uses sequential composition and iterative closure to calculate the atomicity of a
while loop. Note that the loop condition e1 is evaluate first.

[EXP REF GUARD] checks accesses to lock guarded fields. The field access itself is a mover if
the lock is held and error otherwise. The atomicity of the whole expression (e.fd) is the sequential
composition of the atomicity a of expression e and that of the access itself b.

[EXP CALL] checks method calls. The atomicity of a method call is the sequential composition
of the evaluation of the object, the parameters and the method invocation itself. The atomicity of
the invocation itself is got by replace this with the real object in the formal atomicity annotation,
which can be a conditional atomicity.

[EXP SYNC] deals with locking operations. It is a little more complicated. The S(l, a) function
evaluates the atomicity of the statement when l is locked or not. For example, S(l, const) =
l?const : atomic and S(l, mover) = l?mover : atomic. This means when lock l is already
held, the const and mover of the expression is kept for the whole statement. Otherwise, the
statement is atomic. For conditional atomicities, S(l, (l?b1 : b2)) = S(l, b1) and (S(l, (l′?b1 : b2)) =
l′?S(l, b1) : S(l, b2) if l 6= l′. This should be easy to understand. The type checker basically resolves
the conditional atomicity if the lock in synchronized is the one in the conditional atomicity.
Otherwise, it recurses.

There are other important rules not discussed here. See [4] for a complete discussion.

3.4 Implementation and Applications

The authors of [4] implemented the atomicity checker based on rccjava for the full Java language.
Similar relaxing techniques as discussed in section 2.5 are used to suppress spurious reports and
reduce annotation numbers.

7



The type checker is applied to several JDK 1.4 library classes. A concurrency bug in
StringBuffer is found. The conditional atomicity was proved to be useful in type checking
java.util.Vector class.

4 RacerX: Static Detection of Race Conditions and Deadlocks

Type system based techniques are useful but they normally requires slightly heavy annotations
and are sometimes too restrictive in terms of locking scheme. The fact that type checking is
normally done intra-procedural also limits the “cleverness” of the checker and mandates more
annotations. More sophisticated program analysis can potentially do clever inference and thus
reduce annotation amount and check for invariants not easily expressed as type systems. For
large existing systems, the amount of annotations needed is an important factor in whether the
application will be successful. RacerX [7] is a static program analysis tool to detect both race
conditions and deadlocks. It is intended to be used on complex systems like the Linux and
FreeBSD kernel. Here we only discuss its race detection part.

4.1 Analysis Overview

RacerX uses flow-sensitive, depth-first and inter-procedural analysis to detect races in C programs.
It is flow-sensitive because every function is analyzed separately at each call-site, because different
locks can be held at different call sites. Note that rccjava mandates each function to be called all
holding the required locks. It is inter-procedural meaning that analysis follows function calls and
thus can be exponential. At a high level, using RacerX to check a system involves the following
phases, (1) retargeting it to system-specific locking functions, in which the programmer provide a
list of locking/unlocking function and specify their specific functions (2) extracting a control flow
graph from the system, (3) detecting races and deadlocks from the program, (4) post-processing
and ranking the results, (5) inspection.

The control flow graph (CFG) is a simplified model of the whole system. It contains in-
formation like all function calls, access to shared variables, any concurrency operations like
lock/unlocking and interrupt disabling/enabling, etc. The CFG facilitates later processing by
providing a linked, in-memory representation of the relevant information in the whole system.

The analysis then starts from each root function in the CFG and follows all the function calls
in the function recursively. Lockset tracking is the basic form of the analysis. At function level,
the analysis produces for each function f a list of mappings, each having the form l → (l1, · · · , ln),
meaning calling f with lockset l will possibly produce any one of l1, · · · , ln. At the statement
level, each path is taken to exhaustively to generate the list of resulting locksets for each function.
Cache can be done at both the function level and statement level to reduce the amount of analysis
significantly. This is analysis is certainly exponential. However, most functions should acquire
and lock locks consistently if they are meant to be easily understood. Therefore the number of
locksets in the resulting list for each input lock should be small.

With the lockset information available for each statement after the analysis is done, in an
overly simplistic way, race conditions can be detected by finding those statements that access
global variables without holding locks. A backtrace of how the race happens can also be obtained
by tracing back the analysis path and print out all the function calls and branches taken.

4.2 Post Processing and Result Ranking

The analysis described above is overly simplistic and for real program a lot can go wrong. Unlike
rccjava, where users annotate the program to provide information like thread-local classes, RacerX

8



uses mostly post processing and result ranking to alleviate these problems. The following are some
practical problems of the simplistic approach,

• Locking information may not be accurate. For example, semaphores are used in the Linux
kernel both as locks and as a rendezvous mechanism to implement producer-consumer
relationships, where the producer ups the semaphore and the consumer downs the semaphore.
If these are treated as locks, the consumer will be holding the lock for ever after this.

• False paths exist, for example in parameter-controlled locking where both the locking and
unlocking operation are placed inside the if statement controlled by the condition. Two
extra false paths will be generated for this setting, one locking without unlocking and one
unlocking without locking. This leads to false positives.

• Certain part of the code may not be multithreaded. For example, the boot process of the
Linux kernel is mostly single-threaded.

• Variable x may not need to be protected. Some are only read by multiple threads, and some
are modified in an carefully arranged way so that they always represents consistent state.

RacerX handles these problems by giving scores to potential errors found. The errors are then
sorted by their scores before presented to the user, in the hope that most relevant errors are on top
of the list, just as Internet search engines do with their results. Unfortunately, the techniques to
determine the scores in RacerX are very ad-hoc and some are complex. Here we list how RacerX
handles the last problem to show the flavor of the method. See [7] for a complete treatment.

Handling variables not requiring protection

Count number of times that X was the first, last or only object in a critical section
+4 if only object > 1 times, +2 if 1 time.
+1 if first object > 0 times.
+1 if last object > 0 times.

Compute z-test statistic based on count of how often protected with any lock versus
not protected.

+2 if z > 2.
-2 if non-global and z < −2.

Count the number n of unprotected variables in the non-critical section.
+2 if n > 4.
+1 if n > 1.

Non-atomic updates: writes to > 32-bits or bitfields.
+1.

Access was a write.
+1.

4.3 Applications

Results are reported of using RacerX on the Linux kernel, the FreeBSD kernel and the kernel of a
commercial OS, System X. The annotation density is about 100 per 1M. For Linux the reported
results are, 3 bug, 2 unconfirmed, 2 benign and 6 false positives.

9



5 Discussion and Conclusion

Tools for automatic checking of concurrency bugs are still quite far from satisfactory. This is
probably due both to the inherent complexity of concurrent systems and the in-expressiveness
of popular systems languages like C. At a high level, the tools we surveyed take two radically
different approaches to these problems. Rccjava and atomicity types extends the language and
let the programmers provide more information through annotations. RacerX, on the other hand,
tries to infer concurrency control scheme of the program by program analysis with little help from
user annotations. Of course the RacerX way makes the tool easier to use and thus effortlessly
deployable. However, from the techniques and results reported, the error ranking techniques
are ad-hoc, sometimes subjective and possibly domain specific. All three applications of RacerX
are operating system kernels which share common concurrency patterns. RacerX may or may
not work well with other applications and may need significant tweaking. On the other hand,
language-based solutions are harder to deploy because of the porting/annotation overhead. Once
deployed, it can make the development more productive.

Alias resolution is an important problem in all these tools. The existence of reference and
pointer types mandates some form of alias resolution to determine the alias relationships of
references and pointers. All three tools take simple approaches to this problem. Rccjava and
atomicity types allow aliasing of this and the actual object in locking annotations. External locks
extends this aliasing resolution somewhat by allowing an object contained in a parent object to be
protected by locks on the parent object or any final fields reachable from it. RacerX obviate the
alias problem by representing local and parameter pointers by their type names rather than the
thing they point to. This is a conservative approximation that can lead to spurious race reports.
Although this will not miss any real races, it may make the real ones harder to identify by the
user because of the extra spurious ones.

The theory of movers looks surprisingly similar to the two−phaselocking scheme in database
concurrency control. Two − phaselocking states that a transaction is guaranteed to be isolated

from other transactions if it did not release any lock before it acquires all locks it needs. Because
lock acquisitions are right movers and lock releases are left movers. This corresponds directly to
the structure of an atomic action by the theory of movers, i.e. “right-movers - atomic action - left
movers structures”. Putting the work in this context makes it clearer and we may well be able to
borrow from the database research community. Additionally, in this sense the name “atomicity”
types is actually a misnomer and should be called “isolation” types, in the ACID (Atomicity,
Consistency, Isolation and Durability) terms. The atomic methods in [4] are not atomic, because
they do not survive program or machine crashes, but isolated from other concurrent actions.

References

[1] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Roby. Bandera: a source-level interface for
model checking java programs. In International Conference on Software Engineering, pages
762–765, 2000.

[2] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking. Technical
Report #159, Palo Alto, USA, 1998.

[3] C. Flanagan and S. N. Freund. Type-based race detection for java. In Proceedings of the

2000 ACM SIGPLAN Conference on Programming Language Design and Implementation,
Vancouver, British Columnbia, Canada, 2000.

10



[4] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proceedings of

the ACM SIGPLAN 2003 conference on Programming language design and implementation,
pages 338–349. ACM Press, 2003.

[5] K. R. M. Leino, G. Nelson, and J. B. Saxe. Esc/java user’s manual. Technical Report
2000-002, Compaq SRC, October 2000.

[6] R. Lipton. Reduction: A method of proving properties of parallel programs. 18:12:717–721,
1975.

[7] D. on Engler and K. Ashcraft. Racerx: Effective, static detection of race conditions and
deadlock. In Proceedings of the 19th ACM Symposium on Operating Systems Principles,
Bolton Landing, New York, USA, 2003.

[8] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic
data race detector for multithreaded programs. ACM Transactions on Computer Systems,
15(4):391–411, 1997.

[9] N. Sterling. Warlock - a static data race analysis tool. In USENIX Winter, pages 97–106,
1993.

[10] W. Visser, K. Havelund, G. Brat, and S. Park. Java pathfinder - second generation of a java
model checker, 2000.

11


