
A Distributed Persistent Object Store for Scalable Service

Chao Jin, Weimin Zheng, Feng Zhou, Yinghui Wu

jinchao99@mails.tsinghua.edu.cn

Institute of High Performance Computing Technology

Dept. of Computer Science and Technology, Tsinghua University

100084, Beijing, PR China

Abstract

This paper presents a distributed persistent object store designed to simplify scalable service in

cluster environment. This distributed object store, called TODS (Tsinghua Object Data Store), presents

a single-imaged, transparent persistent and object-oriented view of the storage devices of the whole

cluster. TODS is designed to be incremental scalable and efficient, and also has the properties of the

high concurrency, high throughput and availability which are necessary for scalable service. TODS

supports distributed ACID transactions within the cluster, which qualifies its use in the building of

complex transactional services. And the user interface of TODS is fitter for building service than that of

file system, and significantly easier to use than that of RDBMS. TODS is a reusable platform for

scalable service in cluster by forming many general data management functions into one independent

layer. This paper gives the motivation, principle and architecture of TODS. Some technique details are

also discussed. In our performance experiments, the system scales smoothly to a 36-node server cluster

and achieves 11,160 In-memory reads/sec and 396 transactions/sec.

1. Introduction

Because of its scalability, high availability and cost-effective, clusters have been thought to be

natural-platform for network service [1]. Storage system solution used in cluster environment can

mainly be divided into two categories: file system and RDBMS. However for scalable service build on

cluster environment, these two methods respectively have their disadvantages. File system provides

directly supports for stream interface, and this is very inconvenient for structured or serni-stnactured

data structure of network service, especially Internet service. And file system lacks import facilities like

transaction, data recovery and query etc. Many distributed file system can liberate the programmers

from complex distributed data management, but the prevailing distributed file system such as NFS and

AFS, were designed for WAN and could not sufficiently utilize the full feature of modem clusters.

While RDBMS provides transaction and complete ACID supports, its high reliability and durability

and the overhead of SQL make it not fit for network services which needs high performance and high

availability at first. Although distributed or parallel database possess scalability in some degree, its

expensive cost make them not acceptable by general customs.

36

As illustrated above, up to now there is no storage systems fit for distributed persistent

management needed by scalable service in cluster environment. Many network services have to

implement these properties besides their service logic, for example Porcupine [3]. Although this

method can solve the problem, it also aggravates the burden of programmers and results in the code

hard to maintain and evolve. This paper presents a distributed persistent object store TODS

(Tsinghua Object Data Store) to simplify scalable network service. It is a reusable separate platform to

abstract the distributed data management from the service logic. The goal of TODS is to simplify the

construction of Internet service in cluster.

First, TODS provides transparent persistent object access support, this object-based interface is

higher-level than file system, and fitter for network service development. Is behaves as a scalable and

fault-tolerance object store with transaction support. And the whole storage space of cluster is single

image to users. The transparent persistent interface in Java language is compatible with JDO [4]. User

applications written in Java can transparently access objects stored in a TODS system, which means

that application developers are completely freed from writing code to make his data objects persistent.

Objects are automatically fetched from store when they are accessed, and modified objects are

automatically written back.

Second, TODS utilizes cluster architecture to provide increment scalability. Distributed persistent

data management, fault-tolerance and crash recovery are maintained by TODS. As a light weighted

scalable object store, the design of TODS keeps the high concurrency, scalable throughput and

availability in mind. The design of TODS also considers the properties of clusters such as high speed,

low latency interconnection and incremental scalability. Service built on TODS naturally inherits these

properties and becomes scalable too. Compared with relational table of RDBMS, the granularity of

object makes TODS higher concurrency; without SQL interface makes TODS more parallel than

RDBMS.

The remaining of the paper is organized as follows; Section 2 of this paper presents the overview

of TODS. Section 3 presents design principles, architecture and implementation of TODS. Section 4

presents performance results. Section 5 describes the related work and section 6 concludes this paper.

2. TODS Overview

A TODS system is a self-contained data management layer running on a server cluster to handle

storage requests of network services running on the same cluster. TODS provides a repository of

persistent objects. Each object in the repository has a unique identity, a type and value. The information

of type includes each field of this class, which is maintained by TODS. TODSLib is the interface of

TODS, which is a binary library. Service processes use this library to map the API calls to messages

sent to TODS server side, which is a collection of cooperating server. The architecture of TODS server

is peer to peer. Each of the server sites provide the clients same image of data stored in TODS.

Currently a Java version of TODSLib is implemented, which is compatible with JDO [4], the emerging

standard of SUN. Below the server side is the storage brick, which are single-node transactional data

stores. They manage local data in a key-value fashion, and provide the function of data filtering to

37

assist query functionalities of server side.

The interface of TODS is very convenient to the users, they only need to link the TODSLib and

call the responding API to make the object persistent, transaction etc. Binary code of the user class is

modified before loading to implement the mechanism which works with other parts of TODSLib to

track the state of persistent objects. In current Java prototype of TODS, this mechanism is a specific

interface j a v a x . j d o . P e r s i s t e n c e C a p a b l e , which defined by JDO.

Objects managed by TODS are put into name spaces known as Object Spaces. Each object space

has its own set of class hierarchy and objects. An Object Space is analogous to a database or a table

space in RDBMS, or a directory in file systems. The list of all Object Spaces, class meta-data and

permission rules of each Object Space are all maintained by the Meta-Server. Data of an Object Space

are stored on a subset of all the Bricks, whose list is managed by the Meta-Server. However, a Brick

may be well shared by multiple Object Spaces.

3. Architecture and Implementation of TODS

3.1 Architecture of TODS
Figure 1 illustrates the process architecture of

TODS. TODS executes as two group of

communicating process: peer-server processed and

store-brick process. As the assumptions of cluster

environment, problems about security are not taken

into account.

Each peer-server plays several roles. First, it

acts as an agent for application processes which

can be local or from local network. When an

application needs object, TODSLib automatic fetch

it through socket request from peer-server, which

fetches the object from other peer-server site or

from the store-brick server. Second, it is an :
: Cluster

object-cache manager. The granularity of the cache ~[g/a~e't-TOD-$~rhifdrfti?6

is object, and all the peer-servers cooperate to

provide a global object-cache. Third, the peer-server is responsible for concurrency control and crash

recovery. The peer-server is also responsible for distributed transaction. Considering the low latency of

LAN, we use the two-phase commit protocol to implement the distributed transaction. Fourth, the

distributed query on object data is done on peer-servers, which utilize the pattern match function of

brick to implement this work.

Bricks are single-node transactional data stores. They manage local data in a key-value fashion, and

provide local transaction and primitive query functionalities.

The meta-server is responsible for meta-data management and system configuration. Meta-server is

38

duplicated for high availability. System configuration includes location (IP, port) and parameters of all

components such as Peer Servers and Store-Bricks. This ensures centralized management of the whole

system. Meta-data includes information about name space structure, users and group information,

persistent class list and detail field information for each user class.

This process architecture provides a great deal of flexibility. Using more than one peer server can

prevent Peer-Server from becoming performance bottlenecks, which is often the case in classic

client-server systems. Also, this method is able to increase availability. The client library can

transparently switch to another Peer-Server in case one fails. If the service instance and Peer-Server are

running on the same node, which is often true, they can communicate with some relative faster means

than network, such as a shared memory block.

3.2 TODS Software Components
TODSLib

When the application attempts to reference objects which are not present in the client object-cache,

TODSLib sends "fetch object" request by socket message to connected server, which fetches the

necessary objects from other peer server or from store-brick (the requested object not in the global

server cache). When a transient object is made persistent, all objects reachable from it are also made

persistent (persistence by reachability).

TODS provides several ways to retrieve objects from the store. The simplest way is to access

referenced objects from existing ones. Queries cab be used to get the first group of objects. TODS

implements the simple query interface defined by JDO. A query is defined by a query filter against a

collection of candidate objects of a certain class, with other elements such as parameters and unbound

variables.

Brick Connection Manager

~ i ~ ¸̧ ~ ~ ~ i ~ i ~ i i~ ~ ~i ! ~ ~ /

I l l | l l l l l

~H

Figure2 Peer-Server Components

Peer-Server

Figure 2 illustrates the internal structure of the TODS peer-server in more detail. It is divided into

two main components: a Server Interface which communicates with the applications, and the

Distributed Store Manager which manages the persistent object data. The Server Interface is an agent

39

Manager is

manipulates

Bricks

responsible to meet the requests from the clients. When an application connects with the peer-server,

the server associates session state (User information and Object Space information) with this

connection. User information is checked against unauthorized access.

Below the Server Interface is the Distributed Store Manager. As shown in Figure 2, the Store

responsible for global-cache manager, distributed transaction and query request. It

all the Store-Brick into a single image system.

Brick is currently implemented upon the Berkeley DB [10] library. With advanced features such as

XA transaction support and replication, and a long evolving history, Berkeley DB provides a very

stable foundation for our work. Peer-Servers and Bricks also manage directory-based caches to

improve non-transactional data access performance. Peer-Servers cache objects accessed frequently in

memory. Each Brick maintains a directory about which Peer-Server currently cache which objects, and

invalidates data on corresponding Peer-Server when certain objects are updated.

3.3 Data Model
Objects managed by TODS are put into name spaces known as Object Spaces. Object (or persistent

object) is the granularity of most operations in TODS. Every persistent object is associated with a

globally unique id (OID). An object has a number of value fields and can reference other objects.

Figure 3 illustrates an example of object references. A and B are active persistent objects, with A

referring to an inactive one, C. I) and E are transient objects not currently managed by TODSLib.

However, they will become persistent by a make persistent call to TODSLib.

When a transient object is made persistent, all objects reachable from

it are also made persistent (persistence by reachability). Persistent Service Instance
objects are long-lived and independent of life-cycles of the service

instances or TODS runtime. Any modification to the object will be'~'OD'SLi~"...... ~
written to the store implicitly at some time (e.g., when transaction is /

committed). Persistent objects are loaded into memory automatically
when needed.

There are several ways to retrieve objects from the store. The

simplest way is to access referenced objects from existing ones, e.g.,

accessing employee objects from the containing department object. It

works as it should. Queries or class extents are used to get the first

group of objects. TODS implements the simple query interface defmed

by JDO. A query is defined by a query filter against a collection of

candidate objects of a certain class, with other elements such as Figure 3 Objects references

parameters and unbound variables. Class extent is actually a

degenerated query, which lists all objects of a certain class. Apparently it provides better performance
for enumerating operations compared with query.

An Object ID is a 128bit integer, whose structure is shown in figure 4. Object Space ID (OSID)

indicates which Object Space this object belongs to. Class ID (CLID) references to class definition in

the Meta-Server, it is assigned when first object of its class is inserted into the system. Node ID (NID)

40

denotes the location of the object, while Serial Number is the local ID of the object.

One thing to notice is that the OID is a physical ID, in the sense that it indicates on which node the

object is located. The system can directly find the object just by the OID. This contrasts to the

alternative approach of using a logical object ID or "path" and thus needs to look up the real location of

objects before accessing them, which introduces more overhead and the problem of effectively and

coherently caching the lookups. Logical ID or text path are often introduced for user friendliness and

location transparency. The former is not a

problem in TODS because TODSLib

completely hides from users the details of

fetching and storing persistence objects. OIDs

are not even seen by them. The latter reason is

most justified for wide-area distributed

systems, where nodes and network failures

and changes are common. As TODS is

designed for well managed cluster

environment, it is found that an OID with

more information greatly simplifies system

design and improves performance.

3.4 Object State Maintaining

Object Serial Number (SN)

Node ID (NID)

132 1,21 20 1,6 48

k Class ID (CLID)

Object Space ID (OSID)
Misc.* & Reserved

Figure 5 128bit OlD format
* E.g. One bit used to indicate temporary OlDs

Every persistent object is stored within Bricks as a key-value pair, with its OID as the key and

content as the value. The value part is divided into two parts, a header and field values. The header is

an index to every field, which is of variable length, for fast lookup. Primitive field types such as

numbers, strings and dates are embedded in the data block. Certain collection types such as lists, sets

and hash tables which are supported by standard Java library are also embedded. Other user-defined

persistent objects referenced by this object are represented by its OID.

Class definitions and hierarchy of all user classes in each Object Space are maintained by the

Meta-Server. The record of each class contains the names and types of all persistent fields, plus the

Class ID of the parent class, if there is one. The class hierarchy is built from all the records at start-up

time of the Meta-Server and maintained in memory. It is used mostly to support class extents

(enumeration of all objects of the same class), which should sometimes return all objects of the class
and its descendent classes.

During operations like object storing and fetching, the composing and decomposing of data blocks

are done by TODSLib, where Peer Servers and Bricks do not care about the structure of data blocks.

This makes the system behave like a scalable distributed hash table [5]. For other operations like

queries, Peer Servers and Bricks access the internals of the data block. Bricks only do simple and fast

filtering of objects with the help of the header. Peer Servers access fields with the class meta-data they

get from the Meta-Server. We found this layered data access approach a good trade-off between
flexibility and efficiency. Every component in the system gets reasonable knowledge of structures of

41

data and does no redundant work like repetitively packaging and un-packaging an object.

Inside user service processes, read and write to any persistent data object should be tracked. As

mentioned in 4.2, these are done by online addition to the binary code of user objects. Although there

are lots of details under the scene, the general idea is clear. Binary code of the user class is modified

before loading to implement a specific interface j a v a x . j d o . P e r s i s t e n c e C a p a b l e , which

works with other parts of TODSLib to track the state of persistent objects. Many of user operations

finally translate into command messages being sent to Peer Servers and result messages back from

them, all without a single line of hand-written code by user.

TODSLib maintains sob state with the Peer Server it connects to. Knowledge about meta-data and

persistent objects are often cached by TODSLib. But if the Peer Server fails, TODSLib simply fails all

the active transactions and connect to another Peer Server. The service will continue to run, although

some users may need to retry the failed transactions.

3.5 Cache
Caches are maintained by components of TODS to improve performance. Figure 5 shows how they

interact.

The Transaction Cache (TX Cache in the figure)

caches objects during the process of a transaction. It

improves transactional access performance by avoiding

repetitive fetching the same object within a single

transaction. The cache is emptied when the transaction

is finished. Subsequent read requests will go directly to

the Bricks.

The Object Cache on each Peer Server serves to

improve non-transactional performance. Transactional

operations just ignore this cache. It is essentially a hash idation

table with size constraint and LRU replacement policy,

mapping OIDs to object data blocks. A

non-transactional read will first look at this cache. If a

matching record is found, a network message exchange

with the Brick and a disk read will be saved. Due to the

fact that service instances and their Peer Servers are

often on the same node, the overhead of a read Figure 5 Cache Interactions
operation that hits the Object Cache can be as low as a

local IPC call such as a shared memory access.

A cache directory is maintained at each Brick to ensure that copies of objects in corresponding Peer

Servers are up to date. It tracks which Peer Servers cache which objects and invalidates the copies if

they are updated. How to efficiently maintain the validity of this dir is a subtle problem. If a lot of

traffic is used to maintain it, the benefits of the Object Cache will be compromised. However the

directory is allowed to contain some redundant items, i.e., a cache item that does not exist on a Peer

42

master-slave structure. Each update to its data is synchronous distributed from the master to all the

slaves. In case that the master fails, a new master will be elected immediately to take the place. And the

failed Meta-Server simply joins the replication group again after it is repaired. Its data store is then

updated to current state before put into work again.

TODS managed to recover distributed transactions mainly with the help of persistent transactions

state Peer Servers maintain. It contains the states of each distributed transaction and its corresponding

local transactions. When one brick server fails, during its restarting process, it will detect whether there

are unresolved distributed transactions. I f there is any, it will notify the related Peer Servers with

broadcasting. These Peer Servers in turn send commit or rollback commands to the Brick regarding

these transactions and finally put the Brick back to normal operations.

Another simpler case is Peer Server failures. When a failed Peer Server restarts, it checks its

transaction state store and re-commits all distributed transactions in committing state and rolls back all

other transactions before that state.

3.7 Query
The simplest form of a query is accessing a class extent. Every persistent object in a Brick has its

CLID as a secondary index in the underlying Berkeley DB table. So it is straightforward to iterate over

all objects of a certain class by look them up via the CLID of the class. This is done by using a cursor

supported by Berkeley DB.

A real query contains a candidate extent or collection, a Boolean filter string, parameters and

unbound variables. The query interface is more programmatic where users call methods to define each

of the above elements, rather than declarative where user use a string to specify all these elements

which is the case with SQL. This apparently saves some parsing overhead. The query is first translated

into a TODSQuery object. I f the query is simply against a collection of in-memory objects, it is

immediately done by TODSLib, using a simple iteration method, within the service process. For most

cases the query will be against a class extent residing on the Peer Server. Then the TODSQuery object

is sent to the Peer Server for execution. At the Peer Server, the query is decomposed into two parts, one

is simple filters like the second field equals "Mary", and the other is the remaining more complex filters

such as navigations (filters regarding referenced objects), The former is sent to the related Bricks,

which in turn return satisfying objects. The later set of filters is then applied on them by the Peer Server

to get the final result set.

Currently Bricks do not maintain indexes. Thus all queries are executed with linear scanning.

Introduction of indexing support is rather straightforward and will probably be done in later versions of

TODS.

4 Performance

Performance experiment results are presented in this section. Our test environment is a 36-node

server cluster. Each node is equipped with 4 Intel Pentium III Xeon processors at 750 Mhz, 1 GB of

RAM and a 36 GB 10000 RPM SCSI disk. The network is 100M fast Ethernet. All nodes run Redhat

Linux 7.2 with stock 2.4.7 enterprise kernel. TODS and test programs were run with Sun JDK

1.4.0-b92 for x86 Linux. All tests had a warm-up period of 1 minute and test period of 5 minutes. Each

44

test was run 3 times and averages were taken.

In-Memory Reads

In this test, a special version of Brick is used, which keep all data in a simple in-memory hash table,

instead of Berkeley DB tables. The test is designed to measure the communication overhead of the

system and maximum scalability without considering disk I/O. We ran one copy of Brick, Peer Server

and the test program on each of the nodes. All test programs connect to local Peer Servers and each

Peer Server connect to all Bricks by round-robin. The object size is about 1KB. Results are shown in

figure 9. The results show that the system is nearly linear scalable, with max throughput for our 36

12O00
11000
10000
0000
8000

70oo / . /

o .o00 i . . /
5000 v
40oo / /
3000 ' e / '
2000
1000

cluster as 11,160 reads/sec.

Another test is performed to measure

performance of reading objects of different

sizes (1KB - 128KB). All 36 nodes were used

in this test. The results are shown in figure 10

and 11. Briefly, for 1KB objects 11,160 reads

can be done a second with payload bandwidth

of liMB/s, and for 128KB objects, 1,332

reads with payload bandwidth of 170MB/s.

This ideal performance is adequate for any

conceivable Interact services apart from media

and file services.

/ J
/

/

5 10 15 20 25 30 35 40
Nsrlck

Figure 6 In-memory Read Scalability

O

12000
11000 i
10000 .
9O00

8000

7000,
] eooo;

,5000'

4000
3000
2000
I000

0

180000

140000

120000

• ~ 100000
l

'

1 L

20 40 60 80 100 120
Object Size(KB)

Figure 7 In-memory Read Throughput

J
f

f
/

80000 /

60000

o. 40000

2O0O0

0
140 0 20 40 eo so 100 120 140

Object Size(KB) ,
Figure 8 In-memory Read Payloaa

On-Disk Reads

This test is closer to actual operational environment than the first one. To approximate real-world

workload, we first populated each of the Bricks with 5000 objects of the object length being tested.

Then we access these objects randomly by Object ID we gather when inserting them. Although random

access is not a good "real-world" pattern, it effectively shows the bottom-line performance we should

expect. The Object Caches in Peer Servers are turned off to show raw Brick read performance. In figure

45

12 and 13, the system generate throughput at about 1/3 of the In-Memory throughput. It completes as

many as 2740 reads of 1KB object in a second. As object size increases, payload bandwidth increases

quickly, to 46MB/s when object size is 128KB. This throughput result is satisfying. Since actual
work-load usually has good locality, the efficiency of the Buffer Cache will be much better, thus overall
throughput higher.

3000

2500 ~ , ' ~

2000 I

1500

0
1 1o00

500

\

50000
45000

• 40000
35000
30000
25000
20000

i 10000
10000
5000

. /
/

J

0 20 40 60 80 100 120 140 0 0 20 40 60 80 100 1i0 140
Object Size(KB) Object Slze(KB)

Figure 9 On-disk Read Throughput Figure 10 On-disk Read Payload

Cache-Hit Reads

To test the effectiveness of Object Caches in Peer Servers, we modified the Peer Server to report all

read requests as hitting the cache. With the same configuration as the previous tests, we get the results

shown in figure 14 and 15. For 1KB objects 13,392 reads per second with payload bandwidth of

13MB/s, and for 128KB objects, 1,566 reads with payload bandwidth of 200MB/s. These figures are

about 20% more than those in the in-memory test and 4 times of those in the on-disk test. This shows

that hitting the Object Cache gains substantial throughput for reduced network overhead and disk I/O.

o

14000

12000

10000

800O

500O

4OO0

200O

0
0 20 40 00 80 100 120

Object SIze(KB)
Figure 11 Cache-hit Read Throughput

22O0OO
200000

/ / 180000
1000oo Y
140000 /
120000 / i
100000
80OOO

i 6O0OO
4OO0O
20000

140 0 0 20 40 60 80 100 120 140
Object Slze(KB)

Figure 12 Cache-hit Read Payload

Transactional Writes

Transaction performance is directly tied to disk write performance because they include

46

synchronous writes to the log file. Here we test inserting objects into Bricks by transactions. In

each transaction, we insert four objects that are about 2K in size totally. These transactions are

done locally on Bricks because as we mentioned above, TODS prefers to do local transactions

whenever possible. From the results shown in figure 15, we can see that the transaction

performance grows linearly with Brick number, just as we expected. When all 36 Bricks

participate in, 396 transactions can be done in a second.

14000

12000
10000

8000

~" 6000

4000

2000

\

220000
200000

I 180000

t 60000

140000

120000

100000

80000
00000

40000
20OOO

0

Y /
/

/
,A

/ J

0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Object Size(KB) Object SIze(KB)

Figure l I Cache-hit Read Throughput Figure 12 Cache-hit Read Payload

Distributed Transactions

Distributed transactions incur additional overhead of network communication and persistent transaction

state maintaining. The Peer Server is modified to put subsequent inserted objects into different Bricks,

thus all transaction inserting more than one object becomes distributed. We rerun the last test with a

different configuration - as Bricks are added in, a Peer Server is also run on the nodes, and multiple

copies of the test program is run simultaneously. This avoids that Peer Servers maintaining transaction

state become bottlenecks. The results are shown in figure 16. The performance is roughly 1/3 of that of

local transactions.

5. Related works

TODS is a novel distributed persistent object system that inherits many ideas from previous

research. This section compares TODS with these related works.

DDS (Distributed Data Structure) [5] is persistent data management layer in cluster environment.

DDS presents a single site data structure interface to clients, but partitions and replications the data

across a cluster. The DDS design focuses on availability, performance and scalability issues and is

however rather simplified on issues about data model and consistency. The most useful data structure it

supports is a distributed hash table. DDS provides atomic operation, but without transaction.

SHORE (Scalable Heterogeneous Object REpository) [7] is also a persistent object store system

built to support large applications such as Geographic Information Systems and satellite data

47

repositories. SHORE represents a merger of object data base and file system technologies. By a

symmetric peer-to-peer architecture, SHORE provides good scalability and availability. Access to

persistent objects in Shore is not transparent. Users have to explicitly retrieve every object they use and

have to call a method to notify the update of an object; Second, Shore has its own data definition

language (SDL) and statically compiles SDL files to import user classes, while TODS uses binary code

processing to extract meta-data from user classes, so users never have to maintain two copies of class

definition.

THOR [13] is also a persistent object store which supports atomic transaction. But the aim of

THOR is achieve good performance in a wide-area distributed environment. Unlike clusters, wide-area

systems must deal with heterogeneous, network partitions, untrusted peers, high latency and low

throughput network. Because of these differences, THOR has relaxed consistency semantics and low

update rates.

Active Disk [8] is also a method to take advantage of processing power on individual disk drives

and storage parallelism to reduce network traffic. Request and corresponding application-level code are

sent to Active Disk, so the Disk can execute the code on the requested data. Active Disk is more similar

to a low-end computer than a disk device. Compared with Active Disk, the object interface of

intelligent disk device in TODS makes it more scalable and across platform. Weaker ability of

intelligent disk makes it implements more realism.

6. Conclusion

In this paper, we present the design and implementation of TODS, a distributed persistent object

storage platform specifically designed for scalable services. It is designed with the requirements of

scalable services in mind and appeals to many advantageous properties of modem server clusters. A

decentralized architecture is used which proves to be very scalable and efficient. The user interface of

TODS implements transparent persistence which relieves developers completely from writing I/O code.

Different levels of consistency are supported that makes TODS suits the requirements of different

services.

There are many issues not addresses in current version of TODS. Large block of data (like a PDF

document, a TAR archive) are not handled efficiently. A stream oriented access method (like that of

files) is more desirable. Garbage collection of persistent objects is not implemented. Thus users have to

explicitly delete useless objects. Schema evolution is also not supported now, which is very important

for long-run data management systems. Other interesting topics include implement more transports
such as one based on VIA [12] and one based on local shared memory messaging, and making the

Object Caches inside difference Peer Servers cooperate to ffi~rther improve hit rate, i.e. one Peer Server

accessing another one's cache.

References

[l] Armando Fox and Steven D. Gribble and Yatin Chawathe and Eric A. Brewer and Paul Gauthier.

Cluster-Based Scalable Network Services, In Proceedings of the 16 th ACM Symposium on
Operating Systems Principles, St.-Malo, France, 1997

48

[2] Mitch Wagner, Google Bets The Farm On Linux, available at
http : //www. internetweek.com/lead/leadO6O l OO.htm

[3] Yasushi Saito and Brian N. Bershad and Henry M. Levy. Manageability, Availability and
Performance in Porcupine: A Highly Scalable, Cluster-based Mail Service, Symposium on
Operating Systems Principles, 1999

[4] C. Russell, Java Data Objects 1.0 Proposed Final Draft, JSR12, Sun Microsystems Inc., available
from http://accessl.sun.corn/jdo, 2001

[5] Steven D. Gribble and Eric A. Brewer and Joseph M. Hellerstein and David Culler. Scalable,
Distributed Data Structures for Internet Service Construction, 4th Symposium on Operating
System Design & Implementation, San Diego, 2000

[6] J. Chen and Q. Huang and A. Sajeev. Interoperability between object-oriented programming
languages and relational systems, Proceedings of TOOLS Conference, Melbourne, 1995

[7] Michael Carey, David DeWitt, Michael Franklin, Nancy Hall, Mark McAuliffe, Jeffrey Naughton,
Daniel Schuh, Marvin Solomon, C.K. Tan, Odysseas Tsatalos, Seth White, Michael Zwilling,
Shoring Up Persistent Applications, In Proceedings of ACM-SIGMOD 1994 International
Conference on Management of Data, Minneapolis, Minnesota, 1994.

[8] Riedel, E. and Gibson, G. Active Disks - Remote Execution for Network-Attached Storage,
Technical Report CMU-CS-97-198, December 1997

[9] Wensong Zhang. Linux Virtual Server for Scalable Network Services, Linux Symposium, Ottawa,
2000

[10] Sleepycat Software Inc., Berkeley DB Programmer's Tutorial and Reference Guide, available at
www.sleepycat.com, 2001

[11] M. Raynal and A. Shiper. A Suite of Formal Definitions for Consistency Criteria in Distributed
Shared Memories. ISCA Proceedings of the International Conference PDCS, Dijon France, pages
125--130, September 1996.

[12] Compaq Computer Corp., Intel Corporation, Microsoft Corporation. Virtual Interface
Architecture Specification, Version 1.0. available from www.viarch.org, 1997

[13] Barbara Liskov, Miguel Castro, Liuba Shirra, Atul Adya. Providing Persistent Objects in
Distributed Systems. In proceeding of ECOOP'99.

49

