
A Distributed Persistent Object Store for Scalable Service 

Chao Jin, Weimin Zheng, Feng Zhou, Yinghui Wu 

jinchao99@mails.tsinghua.edu.cn 

Institute of High Performance Computing Technology 

Dept. of  Computer Science and Technology, Tsinghua University 

100084, Beijing, PR China 

Abstract 

This paper presents a distributed persistent object store designed to simplify scalable service in 

cluster environment. This distributed object store, called TODS (Tsinghua Object Data Store), presents 

a single-imaged, transparent persistent and object-oriented view of the storage devices of the whole 

cluster. TODS is designed to be incremental scalable and efficient, and also has the properties of the 

high concurrency, high throughput and availability which are necessary for scalable service. TODS 

supports distributed ACID transactions within the cluster, which qualifies its use in the building of 

complex transactional services. And the user interface of TODS is fitter for building service than that of 

file system, and significantly easier to use than that of RDBMS. TODS is a reusable platform for 

scalable service in cluster by forming many general data management functions into one independent 

layer. This paper gives the motivation, principle and architecture of TODS. Some technique details are 

also discussed. In our performance experiments, the system scales smoothly to a 36-node server cluster 

and achieves 11,160 In-memory reads/sec and 396 transactions/sec. 

1. Introduction 

Because of its scalability, high availability and cost-effective, clusters have been thought to be 

natural-platform for network service [1]. Storage system solution used in cluster environment can 

mainly be divided into two categories: file system and RDBMS. However for scalable service build on 

cluster environment, these two methods respectively have their disadvantages. File system provides 

directly supports for stream interface, and this is very inconvenient for structured or serni-stnactured 

data structure of network service, especially Internet service. And file system lacks import facilities like 

transaction, data recovery and query etc. Many distributed file system can liberate the programmers 

from complex distributed data management, but the prevailing distributed file system such as NFS and 

AFS, were designed for WAN and could not sufficiently utilize the full feature of modem clusters. 

While RDBMS provides transaction and complete ACID supports, its high reliability and durability 

and the overhead of SQL make it not fit for network services which needs high performance and high 

availability at first. Although distributed or parallel database possess scalability in some degree, its 

expensive cost make them not acceptable by general customs. 
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As illustrated above, up to now there is no storage systems fit for distributed persistent 

management needed by scalable service in cluster environment. Many network services have to 

implement these properties besides their service logic, for example Porcupine [3]. Although this 

method can solve the problem, it also aggravates the burden of programmers and results in the code 

hard to maintain and evolve. This paper presents a distributed persistent object store TODS 

(Tsinghua Object Data Store) to simplify scalable network service. It is a reusable separate platform to 

abstract the distributed data management from the service logic. The goal of TODS is to simplify the 

construction of Internet service in cluster. 

First, TODS provides transparent persistent object access support, this object-based interface is 

higher-level than file system, and fitter for network service development. Is behaves as a scalable and 

fault-tolerance object store with transaction support. And the whole storage space of cluster is single 

image to users. The transparent persistent interface in Java language is compatible with JDO [4]. User 

applications written in Java can transparently access objects stored in a TODS system, which means 

that application developers are completely freed from writing code to make his data objects persistent. 

Objects are automatically fetched from store when they are accessed, and modified objects are 

automatically written back. 

Second, TODS utilizes cluster architecture to provide increment scalability. Distributed persistent 

data management, fault-tolerance and crash recovery are maintained by TODS. As a light weighted 

scalable object store, the design of TODS keeps the high concurrency, scalable throughput and 

availability in mind. The design of TODS also considers the properties of clusters such as high speed, 

low latency interconnection and incremental scalability. Service built on TODS naturally inherits these 

properties and becomes scalable too. Compared with relational table of RDBMS, the granularity of 

object makes TODS higher concurrency; without SQL interface makes TODS more parallel than 

RDBMS. 

The remaining of the paper is organized as follows; Section 2 of this paper presents the overview 

of TODS. Section 3 presents design principles, architecture and implementation of TODS. Section 4 

presents performance results. Section 5 describes the related work and section 6 concludes this paper. 

2. TODS Overview 

A TODS system is a self-contained data management layer running on a server cluster to handle 

storage requests of network services running on the same cluster. TODS provides a repository of 

persistent objects. Each object in the repository has a unique identity, a type and value. The information 

of type includes each field of this class, which is maintained by TODS. TODSLib is the interface of 

TODS, which is a binary library. Service processes use this library to map the API calls to messages 

sent to TODS server side, which is a collection of cooperating server. The architecture of TODS server 

is peer to peer. Each of the server sites provide the clients same image of data stored in TODS. 

Currently a Java version of TODSLib is implemented, which is compatible with JDO [4], the emerging 

standard of SUN. Below the server side is the storage brick, which are single-node transactional data 

stores. They manage local data in a key-value fashion, and provide the function of data filtering to 
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assist query functionalities of  server side. 

The interface of  TODS is very convenient to the users, they only need to link the TODSLib and 

call the responding API to make the object persistent, transaction etc. Binary code of  the user class is 

modified before loading to implement the mechanism which works with other parts of  TODSLib to 

track the state of  persistent objects. In current Java prototype of TODS, this mechanism is a specific 

interface j a v a x .  j d o .  P e r s i s t e n c e C a p a b l e ,  which defined by JDO. 

Objects managed by TODS are put into name spaces known as Object Spaces. Each object space 

has its own set of  class hierarchy and objects. An Object Space is analogous to a database or a table 

space in RDBMS, or a directory in file systems. The list of all Object Spaces, class meta-data and 

permission rules of each Object Space are all maintained by the Meta-Server. Data of  an Object Space 

are stored on a subset of all the Bricks, whose list is managed by the Meta-Server. However, a Brick 

may be well shared by multiple Object Spaces. 

3. Architecture and Implementation of TODS 

3.1 Architecture of TODS 
Figure 1 illustrates the process architecture of  

TODS. TODS executes as two group of 

communicating process: peer-server processed and 

store-brick process. As the assumptions of cluster 

environment, problems about security are not taken 

into account. 

Each peer-server plays several roles. First, it 

acts as an agent for application processes which 

can be local or from local network. When an 

application needs object, TODSLib automatic fetch 

it through socket request from peer-server, which 

fetches the object from other peer-server site or 

from the store-brick server. Second, it is an : 
: Cluster 

object-cache manager. The granularity of  the cache . . . . . . . . .  ~[g/a~e't-TOD-$~rhifdrfti?6 . . . . . . . . . . . . . .  

is object, and all the peer-servers cooperate to 

provide a global object-cache. Third, the peer-server is responsible for concurrency control and crash 

recovery. The peer-server is also responsible for distributed transaction. Considering the low latency of 

LAN, we use the two-phase commit protocol to implement the distributed transaction. Fourth, the 

distributed query on object data is done on peer-servers, which utilize the pattern match function of 

brick to implement this work. 

Bricks are single-node transactional data stores. They manage local data in a key-value fashion, and 

provide local transaction and primitive query functionalities. 

The meta-server is responsible for meta-data management and system configuration. Meta-server is 
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duplicated for high availability. System configuration includes location (IP, port) and parameters of  all 

components such as Peer Servers and Store-Bricks. This ensures centralized management of  the whole 

system. Meta-data includes information about name space structure, users and group information, 

persistent class list and detail field information for each user class. 

This process architecture provides a great deal of flexibility. Using more than one peer server can 

prevent Peer-Server from becoming performance bottlenecks, which is often the case in classic 

client-server systems. Also, this method is able to increase availability. The client library can 

transparently switch to another Peer-Server in case one fails. If the service instance and Peer-Server are 

running on the same node, which is often true, they can communicate with some relative faster means 

than network, such as a shared memory block. 

3.2 TODS Software Components 
TODSLib 

When the application attempts to reference objects which are not present in the client object-cache, 

TODSLib sends "fetch object" request by socket message to connected server, which fetches the 

necessary objects from other peer server or from store-brick (the requested object not in the global 

server cache). When a transient object is made persistent, all objects reachable from it are also made 

persistent (persistence by reachability). 

TODS provides several ways to retrieve objects from the store. The simplest way is to access 

referenced objects from existing ones. Queries cab be used to get the first group of  objects. TODS 

implements the simple query interface defined by JDO. A query is defined by a query filter against a 

collection of candidate objects of a certain class, with other elements such as parameters and unbound 

variables. 

Brick Connection Manager 

~ i ~  ¸̧ ~ . . . . . . . .  ~ ~ i ~  i ~ i  i~ ~ ~i ! ~  ~ / 

I l l | l l l l l  

~H 

Figure2 Peer-Server Components 

Peer-Server 

Figure 2 illustrates the internal structure of the TODS peer-server in more detail. It is divided into 

two main components: a Server Interface which communicates with the applications, and the 

Distributed Store Manager which manages the persistent object data. The Server Interface is an agent 
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Manager is 

manipulates 

Bricks 

responsible to meet the requests from the clients. When an application connects with the peer-server, 

the server associates session state (User information and Object Space information) with this 

connection. User information is checked against unauthorized access. 

Below the Server Interface is the Distributed Store Manager. As shown in Figure 2, the Store 

responsible for global-cache manager, distributed transaction and query request. It 

all the Store-Brick into a single image system. 

Brick is currently implemented upon the Berkeley DB [10] library. With advanced features such as 

XA transaction support and replication, and a long evolving history, Berkeley DB provides a very 

stable foundation for our work. Peer-Servers and Bricks also manage directory-based caches to 

improve non-transactional data access performance. Peer-Servers cache objects accessed frequently in 

memory. Each Brick maintains a directory about which Peer-Server currently cache which objects, and 

invalidates data on corresponding Peer-Server when certain objects are updated. 

3.3 Data Model  
Objects managed by TODS are put into name spaces known as Object Spaces. Object (or persistent 

object) is the granularity of most operations in TODS. Every persistent object is associated with a 

globally unique id (OID). An object has a number of value fields and can reference other objects. 

Figure 3 illustrates an example of object references. A and B are active persistent objects, with A 

referring to an inactive one, C. I) and E are transient objects not currently managed by TODSLib. 

However, they will become persistent by a make persistent call to TODSLib. 

When a transient object is made persistent, all objects reachable from 

it are also made persistent (persistence by reachability). Persistent Service Instance 
objects are long-lived and independent of life-cycles of the service 

instances or TODS runtime. Any modification to the object will be .......'~'OD'SLi~"...... ~ 
written to the store implicitly at some time (e.g., when transaction is / 

committed). Persistent objects are loaded into memory automatically 
when needed. 

There are several ways to retrieve objects from the store. The 

simplest way is to access referenced objects from existing ones, e.g., 

accessing employee objects from the containing department object. It 

works as it should. Queries or class extents are used to get the first 

group of objects. TODS implements the simple query interface defmed 

by JDO. A query is defined by a query filter against a collection of 

candidate objects of a certain class, with other elements such as Figure 3 Objects references 

parameters and unbound variables. Class extent is actually a 

degenerated query, which lists all objects of a certain class. Apparently it provides better performance 
for enumerating operations compared with query. 

An Object ID is a 128bit integer, whose structure is shown in figure 4. Object Space ID (OSID) 

indicates which Object Space this object belongs to. Class ID (CLID) references to class definition in 

the Meta-Server, it is assigned when first object of its class is inserted into the system. Node ID (NID) 
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denotes the location of the object, while Serial Number is the local ID of the object. 

One thing to notice is that the OID is a physical  ID, in the sense that it indicates on which node the 

object is located. The system can directly find the object just by the OID. This contrasts to the 

alternative approach of using a logical object ID or "path" and thus needs to look up the real location of 

objects before accessing them, which introduces more overhead and the problem of effectively and 

coherently caching the lookups. Logical ID or text path are often introduced for user friendliness and 

location transparency. The former is not a 

problem in TODS because TODSLib 

completely hides from users the details of 

fetching and storing persistence objects. OIDs 

are not even seen by them. The latter reason is 

most justified for wide-area distributed 

systems, where nodes and network failures 

and changes are common. As TODS is 

designed for well managed cluster 

environment, it is found that an OID with 

more information greatly simplifies system 

design and improves performance. 

3.4 Object State Maintaining 

Object Serial Number (SN) 

Node ID (NID) 

132 1,21 20 1,6 48 

k Class ID (CLID) 

Object Space ID (OSID) 
Misc.* & Reserved 

Figure 5 128bit OlD format 
* E.g. One bit used to indicate temporary OlDs 

Every persistent object is stored within Bricks as a key-value pair, with its OID as the key and 

content as the value. The value part is divided into two parts, a header and field values. The header is 

an index to every field, which is of variable length, for fast lookup. Primitive field types such as 

numbers, strings and dates are embedded in the data block. Certain collection types such as lists, sets 

and hash tables which are supported by standard Java library are also embedded. Other user-defined 

persistent objects referenced by this object are represented by its OID. 

Class definitions and hierarchy of all user classes in each Object Space are maintained by the 

Meta-Server. The record of each class contains the names and types of all persistent fields, plus the 

Class ID of the parent class, if  there is one. The class hierarchy is built from all the records at start-up 

time of the Meta-Server and maintained in memory. It is used mostly to support class extents 

(enumeration of all objects of the same class), which should sometimes return all objects of the class 
and its descendent classes. 

During operations like object storing and fetching, the composing and decomposing of data blocks 

are done by TODSLib, where Peer Servers and Bricks do not care about the structure of data blocks. 

This makes the system behave like a scalable distributed hash table [5]. For other operations like 

queries, Peer Servers and Bricks access the internals of the data block. Bricks only do simple and fast 

filtering of objects with the help of the header. Peer Servers access fields with the class meta-data they 

get from the Meta-Server. We found this layered data access approach a good trade-off between 
flexibility and efficiency. Every component in the system gets reasonable knowledge of structures of 
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data and does no redundant work like repetitively packaging and un-packaging an object. 

Inside user service processes, read and write to any persistent data object should be tracked. As 

mentioned in 4.2, these are done by online addition to the binary code of user objects. Although there 

are lots of details under the scene, the general idea is clear. Binary code of the user class is modified 

before loading to implement a specific interface j a v a x .  j d o .  P e r s i s t e n c e C a p a b l e ,  which 

works with other parts of TODSLib to track the state of  persistent objects. Many of  user operations 

finally translate into command messages being sent to Peer Servers and result messages back from 

them, all without a single line of  hand-written code by user. 

TODSLib maintains sob state with the Peer Server it connects to. Knowledge about meta-data and 

persistent objects are often cached by TODSLib. But if the Peer Server fails, TODSLib simply fails all 

the active transactions and connect to another Peer Server. The service will continue to run, although 

some users may need to retry the failed transactions. 

3.5 Cache 
Caches are maintained by components of  TODS to improve performance. Figure 5 shows how they 

interact. 

The Transaction Cache (TX Cache in the figure) 

caches objects during the process of a transaction. It 

improves transactional access performance by avoiding 

repetitive fetching the same object within a single 

transaction. The cache is emptied when the transaction 

is finished. Subsequent read requests will go directly to 

the Bricks. 

The Object Cache on each Peer Server serves to 

improve non-transactional performance. Transactional 

operations just ignore this cache. It is essentially a hash idation 

table with size constraint and LRU replacement policy, 

mapping OIDs to object data blocks. A 

non-transactional read will first look at this cache. If a 

matching record is found, a network message exchange 

with the Brick and a disk read will be saved. Due to the 

fact that service instances and their Peer Servers are 

often on the same node, the overhead of a read Figure 5 Cache Interactions 
operation that hits the Object Cache can be as low as a 

local IPC call such as a shared memory access. 

A cache directory is maintained at each Brick to ensure that copies of  objects in corresponding Peer 

Servers are up to date. It tracks which Peer Servers cache which objects and invalidates the copies if 

they are updated. How to efficiently maintain the validity of  this dir is a subtle problem. If  a lot of 

traffic is used to maintain it, the benefits of the Object Cache will be compromised. However the 

directory is allowed to contain some redundant items, i.e., a cache item that does not exist on a Peer 
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master-slave structure. Each update to its data is synchronous distributed from the master to all the 

slaves. In case that the master fails, a new master will be elected immediately to take the place. And the 

failed Meta-Server simply joins the replication group again after it is repaired. Its data store is then 

updated to current state before put into work again. 

TODS managed to recover distributed transactions mainly with the help of  persistent transactions 

state Peer Servers maintain. It contains the states of  each distributed transaction and its corresponding 

local transactions. When one brick server fails, during its restarting process, it will detect whether there 

are unresolved distributed transactions. I f  there is any, it will notify the related Peer Servers with 

broadcasting. These Peer Servers in turn send commit or rollback commands to the Brick regarding 

these transactions and finally put the Brick back to normal operations. 

Another simpler case is Peer Server failures. When a failed Peer Server restarts, it checks its 

transaction state store and re-commits all distributed transactions in committing state and rolls back all 

other transactions before that state. 

3.7 Query 
The simplest form of a query is accessing a class extent. Every persistent object in a Brick has its 

CLID as a secondary index in the underlying Berkeley DB table. So it is straightforward to iterate over 

all objects of  a certain class by look them up via the CLID of the class. This is done by using a cursor 

supported by Berkeley DB. 

A real query contains a candidate extent or collection, a Boolean filter string, parameters and 

unbound variables. The query interface is more programmatic where users call methods to define each 

of the above elements, rather than declarative where user use a string to specify all these elements 

which is the case with SQL. This apparently saves some parsing overhead. The query is first translated 

into a TODSQuery object. I f  the query is simply against a collection of  in-memory objects, it is 

immediately done by TODSLib, using a simple iteration method, within the service process. For most 

cases the query will be against a class extent residing on the Peer Server. Then the TODSQuery  object 

is sent to the Peer Server for execution. At the Peer Server, the query is decomposed into two parts, one 

is simple filters like the second field equals "Mary", and the other is the remaining more complex filters 

such as navigations (filters regarding referenced objects), The former is sent to the related Bricks, 

which in turn return satisfying objects. The later set of filters is then applied on them by the Peer Server 

to get the final result set. 

Currently Bricks do not maintain indexes. Thus all queries are executed with linear scanning. 

Introduction of indexing support is rather straightforward and will probably be done in later versions of  

TODS. 

4 Performance 

Performance experiment results are presented in this section. Our test environment is a 36-node 

server cluster. Each node is equipped with 4 Intel Pentium III Xeon processors at 750 Mhz, 1 GB of 

RAM and a 36 GB 10000 RPM SCSI disk. The network is 100M fast Ethernet. All nodes run Redhat 

Linux 7.2 with stock 2.4.7 enterprise kernel. TODS and test programs were run with Sun JDK 

1.4.0-b92 for x86 Linux. All tests had a warm-up period of  1 minute and test period of  5 minutes. Each 
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test was run 3 times and averages were taken. 

In-Memory Reads 

In this test, a special version of Brick is used, which keep all data in a simple in-memory hash table, 

instead of Berkeley DB tables. The test is designed to measure the communication overhead of the 

system and maximum scalability without considering disk I/O. We ran one copy of  Brick, Peer Server 

and the test program on each of the nodes. All test programs connect to local Peer Servers and each 

Peer Server connect to all Bricks by round-robin. The object size is about 1KB. Results are shown in 

figure 9. The results show that the system is nearly linear scalable, with max throughput for our 36 
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cluster as 11,160 reads/sec. 

Another test is performed to measure 

performance of reading objects of different 

sizes (1KB - 128KB). All 36 nodes were used 

in this test. The results are shown in figure 10 

and 11. Briefly, for 1KB objects 11,160 reads 

can be done a second with payload bandwidth 

of liMB/s, and for 128KB objects, 1,332 

reads with payload bandwidth of 170MB/s. 

This ideal performance is adequate for any 

conceivable Interact services apart from media 

and file services. 
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Figure 6 In-memory Read Scalability 
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On-Disk Reads 

This test is closer to actual operational environment than the first one. To approximate real-world 

workload, we first populated each of the Bricks with 5000 objects of  the object length being tested. 

Then we access these objects randomly by Object ID we gather when inserting them. Although random 

access is not a good "real-world" pattern, it effectively shows the bottom-line performance we should 

expect. The Object Caches in Peer Servers are turned off to show raw Brick read performance. In figure 
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12 and 13, the system generate throughput at about 1/3 of the In-Memory throughput. It completes as 

many as 2740 reads of 1KB object in a second. As object size increases, payload bandwidth increases 

quickly, to 46MB/s when object size is 128KB. This throughput result is satisfying. Since actual 
work-load usually has good locality, the efficiency of the Buffer Cache will be much better, thus overall 
throughput higher. 

3000 

2500 ~ , ' ~  

2000 I 

1500 

0 
1 1o00 

500 

\ 

50000 
45000 

• 40000 
35000 
30000 
25000 
20000 

i 10000 
10000 
5000 

. /  
/ 

J 

0 20 40 60 80 100 120 140 0 0 20 40 60 80 100 1i0 140 
Object Size(KB) Object Slze(KB) 

Figure 9 On-disk Read Throughput Figure 10 On-disk Read Payload 

Cache-Hit Reads 

To test the effectiveness of Object Caches in Peer Servers, we modified the Peer Server to report all 

read requests as hitting the cache. With the same configuration as the previous tests, we get the results 

shown in figure 14 and 15. For 1KB objects 13,392 reads per second with payload bandwidth of 

13MB/s, and for 128KB objects, 1,566 reads with payload bandwidth of 200MB/s. These figures are 

about 20% more than those in the in-memory test and 4 times of those in the on-disk test. This shows 

that hitting the Object Cache gains substantial throughput for reduced network overhead and disk I/O. 
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Transactional Writes 

Transaction performance is directly tied to disk write performance because they include 
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synchronous writes to the log file. Here we test inserting objects into Bricks by transactions. In 

each transaction, we insert four objects that are about 2K in size totally. These transactions are 

done locally on Bricks because as we mentioned above, TODS prefers to do local transactions 

whenever possible. From the results shown in figure 15, we can see that the transaction 

performance grows linearly with Brick number, just as we expected. When all 36 Bricks 

participate in, 396 transactions can be done in a second. 
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Distributed Transactions 

Distributed transactions incur additional overhead of network communication and persistent transaction 

state maintaining. The Peer Server is modified to put subsequent inserted objects into different Bricks, 

thus all transaction inserting more than one object becomes distributed. We rerun the last test with a 

different configuration - as Bricks are added in, a Peer Server is also run on the nodes, and multiple 

copies of the test program is run simultaneously. This avoids that Peer Servers maintaining transaction 

state become bottlenecks. The results are shown in figure 16. The performance is roughly 1/3 of that of 

local transactions. 

5. Related works 

TODS is a novel distributed persistent object system that inherits many ideas from previous 

research. This section compares TODS with these related works. 

DDS (Distributed Data Structure) [5] is persistent data management layer in cluster environment. 

DDS presents a single site data structure interface to clients, but partitions and replications the data 

across a cluster. The DDS design focuses on availability, performance and scalability issues and is 

however rather simplified on issues about data model and consistency. The most useful data structure it 

supports is a distributed hash table. DDS provides atomic operation, but without transaction. 

SHORE (Scalable Heterogeneous Object REpository) [7] is also a persistent object store system 

built to support large applications such as Geographic Information Systems and satellite data 
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repositories. SHORE represents a merger of object data base and file system technologies. By a 

symmetric peer-to-peer architecture, SHORE provides good scalability and availability. Access to 

persistent objects in Shore is not transparent. Users have to explicitly retrieve every object they use and 

have to call a method to notify the update of an object; Second, Shore has its own data definition 

language (SDL) and statically compiles SDL files to import user classes, while TODS uses binary code 

processing to extract meta-data from user classes, so users never have to maintain two copies of class 

definition. 

THOR [13] is also a persistent object store which supports atomic transaction. But the aim of  

THOR is achieve good performance in a wide-area distributed environment. Unlike clusters, wide-area 

systems must deal with heterogeneous, network partitions, untrusted peers, high latency and low 

throughput network. Because of these differences, THOR has relaxed consistency semantics and low 

update rates. 

Active Disk [8] is also a method to take advantage of processing power on individual disk drives 

and storage parallelism to reduce network traffic. Request and corresponding application-level code are 

sent to Active Disk, so the Disk can execute the code on the requested data. Active Disk is more similar 

to a low-end computer than a disk device. Compared with Active Disk, the object interface of 

intelligent disk device in TODS makes it more scalable and across platform. Weaker ability of 

intelligent disk makes it implements more realism. 

6. Conclusion 

In this paper, we present the design and implementation of TODS, a distributed persistent object 

storage platform specifically designed for scalable services. It is designed with the requirements of 

scalable services in mind and appeals to many advantageous properties of  modem server clusters. A 

decentralized architecture is used which proves to be very scalable and efficient. The user interface of  

TODS implements transparent persistence which relieves developers completely from writing I/O code. 

Different levels of  consistency are supported that makes TODS suits the requirements of different 

services. 

There are many issues not addresses in current version of  TODS. Large block of  data (like a PDF 

document, a TAR archive) are not handled efficiently. A stream oriented access method (like that of 

files) is more desirable. Garbage collection of persistent objects is not implemented. Thus users have to 

explicitly delete useless objects. Schema evolution is also not supported now, which is very important 

for long-run data management systems. Other interesting topics include implement more transports 
such as one based on VIA [12] and one based on local shared memory messaging, and making the 

Object Caches inside difference Peer Servers cooperate to ffi~rther improve hit rate, i.e. one Peer Server 

accessing another one's cache. 
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