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Abstract 
In this paper we present the design and implementation of 
Tsinghua Object Data Store, a cluster object storage 
system to support the building of scalable services. 
TODS provides a unified, transparent and object-oriented 
view of the storage devices of the whole cluster, which 
greatly simplifies clustered service development. In the 
meantime, it is designed to be very scalable and efficient. 
Services built on it simply inherit these properties and 
become scalable too. TODS also supports ACID 
transactions, which facilitates the building of complex 
transactional services. TODS abstracts away from service 
logic most complexities of data management, which has 
often become major obstacles for developing high quality 
Internet services. The design principles, architecture and 
implementation of TODS are discussed. In our 
performance experiments, the system scales smoothly to 
a 36-node server cluster and achieves 11,160 In-memory 
reads/sec and 396 transactions/sec. We also demonstrate 
that the user interface is significantly easier to use than 
that of RDBMS by a comparative experiment.  

 

1  Introduction 
Server cluster is a natural platform for building 

large-scale Internet services [1]. Clusters are 
incrementally scalable, inherently parallel and easily 
made fault-tolerant. Recent years have already seen lot of 
successful scalable Internet services like Google [2] and 
Yahoo that are built with clusters. However, building 
services has never been an easy task. One of the most 
challenging problems is data management. The data store 
must be scalable, efficient, easy to use and tolerant to 
node failures. Unfortunately, most current clustered 
services use home developed service-specific solutions to 
achieve these properties. For example, the Porcupine 
clustered email system [3] managed to achieve the above 
properties by using its own distributed storage manager 

and doing replication of critical data all by its own. 
Although these techniques do solve the problem, this 
approach mixes application logic with low-level data 
management details, thus make the code neither portable 
nor easy to maintain as the services evolve. It is desirable 
that a separate, reusable data management layer exists to 
abstract away all the complexities and let developers 
focus on service logic. 

The separation of data management from application 
logic is by no means a new idea. RDBMS and distributed 
file systems are standard examples of it. However, the 
status quo of Internet service construction described 
above reflects the fact that these standard data 
management means do not fit into the clustered service 
scenario well. 

In this paper we present Tsinghua Object Data Store, 
our attempt to build an object-oriented data management 
layer as a cluster infrastructure software, specifically for 
the construction of Internet services. It behaves as a 
scalable and fault-tolerant object store with transaction 
support. Moreover, it supports transparent persistence in 
the Java programming language. User applications 
written in Java can transparently access objects stored in 
a TODS system, which means that application developers 
are completely freed from writing code to make his data 
objects persistent. Objects are automatically fetched from 
store when they are accessed, and modified objects are 
automatically written back. The client interface is 
compatible with Java Data Objects API [4], which is the 
emerging standard for transparent data access in Java.  

Behind the scene of the easy-to-use interface, TODS 
maintains the consistent shared state of the cluster store 
in a scalable and fault-tolerant way through decentralized 
software architecture. It also appeals to properties of 
clusters such as high speed, low latency interconnection 
and incremental scalability. Well-known characteristics of 
Internet services are kept in mind when designing TODS, 
including huge data volume, relatively small data unit 
size, high concurrency, good access locality and 
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diversified consistency model requirement.  

2  TODS Overview 
A TODS system is defined as a self-contained data 

management layer running on a server cluster to handle 
storage requests of Internet services running on the same 
cluster. Figure 1 shows how services interact with TODS. 
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Figure 1 TODS Overview 
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Services connect to TODS components known as Peer 
Servers to access data. They are called Peer Servers 
because they are inherently identical to each other from 
users' view, each presenting a single image of the whole 
TODS system and they communicate with each other in a 
peer-to-peer style. There are also other components (the 
lower three blocks), which the service instances do not 
connect to directly. 

Within the service process, a library named TODSLib 
maps user API calls to messages sent to Peer Servers and 
parse results from them. Currently a Java version of 
TODSLib is implemented. As mentioned before, it 
implements transparent persistence and is compliant with 
the Java Data Objects API. 

From a functional point of view, TODS provides 
similar capabilities found in RDBMS and distributed file 
systems. RDBMS provides completely self-contained 
data management capacities and strict consistency 
guarantee to users. Distributed files systems, on the other 
hand, provide distribution abstraction and sometimes 
fault-tolerance support, which are very important 
properties to Internet services.  

However, for Internet services, it is argued that 
RDBMS (and also parallel RDBMS) are often too 
expensive, provides overly powerful semantic guarantees 
and employs generality such as SQL at the cost of 
performance [5]. Another concern raised by researchers is 
the impedance mismatch between relational databases 
and object-oriented programming languages [6]. 
Application developers are forced to write repetitive and 

error-prone code to covert data from a database record to 
an in-memory object and vice versa. On the other hand, 
distributed file systems are often considered too general 
in the sense that the system knows nothing about the 
structure of user data, thus leaving all the work of 
organizing, accessing and querying data to application 
developers. Another important drawback of distributed 
file systems is the lack of transaction support, forcing 
developers to use ad-hoc ways such as custom locking 
servers to maintain data consistency under concurrent 
access. 

The remaining of the paper is organized as follows; 
Section 3 of this paper describes related work. Section 4 
presents design principles, architecture and 
implementation of TODS. Section 5 presents 
performance results. Section 6 discusses application 
examples. Section 7 talks about future work and section 8 
concludes this paper. 

3  Related Work 
TODS incorporates many ideas from previous research 

work that are not aimed directly at Internet services. 
Shore [7] is a well-known object storage repository built 
to support large applications such as Geographic 
Information Systems and satellite data repositories. Also 
using decentralized cluster architecture, Shore provides 
good scalability and availability. Shore provides 
OODB-like features such as a type system and 
transaction support. However, access to persistent objects 
in Shore is not transparent, as in TODS. Users have to 
explicitly retrieve every object they use and have to call a 
method to notify the update of an object. Second, Shore 
has its own data definition language (SDL) and statically 
compiles SDL files to import user classes, while TODS 
uses binary code processing to extract meta-data from 
user classes, so users never have to maintain two copies 
of class definition, one in SDL files and the other in C++ 
source files. 

Distribution Data Structure (DDS), described in [5], 
stores distributes data structures within a cluster. DDS 
shields service authors from the complexities of cluster 
storage management. The DDS design focuses on 
availability, performance and scalability issues and is 
however rather simplified on issues about data model and 
consistency. The most useful data structure it supports is 
a distributed hash table. All the inner structures of data 
items are left to users to organize. Update of one data 
item is atomic, but transaction is not supported. 
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Active Disks [8] is a research effort to exploit 
computing power of embedded processors on disks. The 
most obvious use is to do database queries. This greatly 
improves scalability compared to traditional server-based 
systems. Actually the local storage manager in TODS 
(called a Brick) is much like an Active Disk. It does 
primitive data management tasks such as get, put and 
filtering. Although currently Brick is implemented as a 
software daemon, it is an interesting topic to embed it 
into a device or even a powerful disk drive. 

4  TODS Design and Implementation 
4.1  Design Principles 

Several principles are followed when we design 
TODS. 

Separation of concerns. Apart from abstraction of data 
management tasks from service logic, TODS itself is 
designed to be layered and modular, with different level 
of abstraction for each layer and clear interface between 
modules. 

Abstraction without losing key performance hints. 
Performance hints such as which objects are physically 
"near" are propagated to the more "abstract" upper layer, 
which uses these hints to more effectively arrange its 
work. 

Exploiting properties of clusters, such as that network 
partition never happens, network RAM is faster than 
local disk, all nodes are under central control, etc.. 

4.2  TODS Architecture 

The structure of an Internet service using TODS as 
storage layer is shown in Figure 2. Figure 3 shows the 
distribution of components on a cluster running TODS 
and an Internet service.  

The clients in Figure 2 can be Web browsers, email 
clients or other applications. They connect to service 
instances through the Internet by Internet application 
protocols such as HTTP, IMAP, etc. 

Services are multiple instances of the same service. 
Reverse proxy or DNS rotating can be used to make the 
cluster nature of the service transparent to clients. 
Techniques such as IP take-over by ARP spoofing [9] can 
be exploited to hide transient service failures, as long as 
service instances maintain no state or only soft state that 
can be recovered easily by another service instance from 
persistent data. 
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Figure 2 TODS Architecture  
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Figure 3 Typical TODS Configuration  
Peer Servers are connection points into the TODS 

system. Each Peer Server presents the global image of the 
whole TODS system, abstracting the internal distribution 
of data. So clients connecting to any one of the Peer 
Servers see all data objects in the system. Peer Servers 
also act as transaction managers in distributed 
transactions. The first reason for using more than one 
peer server is that it prevents Peer Server from becoming 
performance bottlenecks, which is often the case in 
classic client-server systems. The second reason is for 
increased availability. The client library can transparently 
switch to another Peer Server in case one fails. Another 
reason is for efficiency. If the service instance and Peer 
Server are running on the same node, which is often true, 
they can communicate with some relative faster means 
than network, such as a shared memory block. 

Bricks are single-node transactional data stores. They 
manage local data in a key-value fashion, and provide 
local transaction and primitive query functionalities. 
Brick is currently implemented upon the Berkeley DB 
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[10] library. With advanced features such as XA 
transaction support and replication, and a long evolving 
history, Berkeley DB provides a very stable foundation 
for our work. Peer Servers and Bricks also manage 
directory-based caches to improve non-transactional data 
access performance. Peer Servers cache objects accessed 
frequently in memory. Each Brick maintains a directory 
about which Peer Servers currently cache which objects, 
and invalidates data on corresponding Peer Servers when 
certain objects are updated. 

The Meta-Server maintains system configuration and 
meta-data. It is replicated and thus assumed fault-tolerant, 
providing a safe place for critical global information. 
System configuration includes location (IP, port) and 
parameters of all components such as Peer Servers and 
Bricks. This ensures centralized management of the 
whole system. Meta-data includes information about 
name space structure, users and groups information, 
persistent class list and meta-data (structure) for each 
user class. Current implementation is based on Java 
Remote Method Invocation (RMI), which is similar to 
RPC. Data replication is implemented using the built-in 
replication feature of Berkeley DB (version 4). 

TODSLib is a Java class library that service 
developers use to access persistent objects in TODS. It 
implements the transparent persistence logic and 
communicates with Peer Servers. To make access to 
external objects stored in TODS identical to accessing 
in-memory objects, synthetic code is inserted into user 
classes to track status change and intercept certain 
operations such as getting a referenced object that is not 
currently in memory. The above process of automatically 
modifying existing code is often mentioned as code 
enhancing. Thanks to the capabilities of modern Java 
Virtual Machines and the simple format of Java 
byte-code, this process is done on-the-fly by TODSLib at 
run-time, without any modification to the Virtual 
Machine or user code. Using a custom class loader, 
TODSLib enhances every persistent class before actually 
loading it, thus making the process completely 
transparent to users. 

TODSLib communicates with Peer Servers using a 
message-oriented protocol. Consecutive requests and 
responses are grouped to form messages to be sent over 
the wire. The underlying network protocol is pluggable. 
Currently we have implemented the transport layer on 
both standard TCP and the GM messaging protocol of 
Myricom, with the latter delivering much shorter latency. 

The encoding/decoding logic and request handling 
framework of this process are encapsulated in a module 
which is reused in both "TODSLib-Peer Server" and 
"Peer Server-Brick" communication. 

4.3  Data Model and User Interface 

Objects managed by TODS are put into name spaces 
known as Object Spaces. Each object space has its own 
set of class hierarchy and objects. An Object Space is 
analogous to a database or a table space in RDBMS, or a 
directory in file systems. The list of all Object Spaces, 
class meta-data and permission rules of each Object 
Space are all maintained by the Meta-Server. Data of an 
Object Space are stored on a subset of all the Bricks, 
whose list is managed by the Meta-Server. However, a 
Brick may be well shared by multiple Object Spaces. 

Object (or persistent object) is the granularity of most 
operations in TODS. Every persistent object is associated 
with a globally unique id (OID). An object has a number 
of value fields and can reference other objects. Figure 4 
illustrates an example of object references. A and B are 
active persistent objects, with A referring to an inactive 
one, C. D and E are transient objects not currently 
managed by TODSLib. However, they will become 
persistent by a make persistent call to TODSLib. 

TODSLib 

Service Instance 

A
B 

C B 

  

E 

D 

A 

TODS Store 

Figure 4 Objects references  

When a transient object is made persistent, all objects 
reachable from it are also made persistent (persistence by 
reachability). Persistent objects are long-lived and 
independent of life-cycles of the service instances or 
TODS runtime. Any modification to the object will be 
written to the store implicitly at some time (e.g., when 
transaction is committed). Persistent objects are loaded 
into memory automatically when needed. 

There are several ways to retrieve objects from the 
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store. The simplest way is to access referenced objects 
from existing ones, e.g., accessing employee objects from 
the containing department object. It works as it should. 
Queries or class extents are used to get the first group of 
objects. TODS implements the simple query interface 
defined by JDO. A query is defined by a query filter 
against a collection of candidate objects of a certain class, 
with other elements such as parameters and unbound 
variables. Class extent is actually a degenerated query, 
which lists all objects of a certain class. Apparently it 
provides better performance for enumerating operations 
compared with query. 

import javax.jdo.*; 
import edu.tsinghua.tods.client.TODSPMF; 
import java.util.Iterator; 
 
public class Simple { 
  public static void main(String[] args) { 
    // -1- Initialize TODSLib 
    // Persistence Manager Factory, analagous to a 
connection factory of RDBMS 
    TODSPMF pmf = new TODSPMF("tods://127.0.0.1", 
"zf", "_password_"); 
    // Persistence Manager, analagous to a 
connection of RDBMS 
    PersistenceManager pm = 
pmf.getPersistenceManager(); 
 
    // -2- Insert a Point into the store 
    Transaction tx = pm.currentTransaction(); 
    tx.begin(); 
    Point p = new Point(); 
    p.setX(5); 
    p.setY(10); 
    pm.makePersistent(p); 
    tx.commit(); 
           
    // -3- List all Points in the store 
    Extent e = pm.getExtent(Point.class, false); 
    for (Iterator it = e.iterator(); it.hasNext(); ) 

{ 
      Point p2 = (Point)it.next(); 
      System.out.println("X="+p2.getX()+", 
Y="+p2.getY()); 
    } 
     
    // -4- Close the Persistence Manager 
    pm.close(); 
  } 
} 
// User data class 
class Point { 
  private int x; 
  Private int y; 
   
  public int getX() { return x; } 
  public int getY() { return y; } 
  public void setX(int v) { x = v; } 
  public void setY(int v) { y = v; } 
} 
 

Figure 5 Simple Java code example using TODS 

A simple code example of using TODS is shown in 

figure 5. Actually it uses the Java Data Objects API 
which is implemented by TODSLib. 

After initializing the TODSLib, the above example 
first inserts a Point object, using a transaction. Then it 
lists all Point objects in the store.  

4.4  Object Identification and Locating 

An Object ID is a 128bit integer, whose structure is 
shown in figure 5. Object Space ID (OSID) indicates 
which Object Space this object belongs to. Class ID 
(CLID) references to class definition in the Meta-Server, 
it is assigned when first object of its class is inserted into 
the system. Node ID (NID) denotes the location of the 
object, while Serial Number is the local ID of the object. 

Misc.* & Reserved 

Class ID (CLID) 

  32      12    20     16          48 

Node ID (NID) 

Object Serial Number (SN) 

Figure 6 128bit OID format 
* E.g. One bit used to indicate temporary OIDs 

Object Space ID (OSID)

 

One thing to notice is that the OID is a physical ID, in 
the sense that it indicates on which node the object is 
located. The system can directly find the object just by 
the OID. This contrasts to the alternative approach of 
using a logical object ID or "path" and thus needs to look 
up the real location of objects before accessing them, 
which introduces more overhead and the problem of 
effectively and coherently caching the lookups. Logical 
ID or text path are often introduced for user friendliness 
and location transparency. The former is not a problem in 
TODS because TODSLib completely hides from users 
the details of fetching and storing persistence objects. 
OIDs are not even seen by them. The latter reason is most 
justified for wide-area distributed systems, where nodes 
and network failures and changes are common. As TODS 
is designed for well managed cluster environment, it is 
found that an OID with more information greatly 
simplifies system design and improves performance. 

4.5  Data Consistency, Transactions and 
Failure Recovery 

TODS supports non-transactional and transactional 
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modes of access. It is determined by whether data 
accesses are enclosed in a transaction. For 
non-transactional accesses, data caching on Peer Servers 
are enabled, which results in much better performance. 
However there is no guarantee about data consistency 
under concurrent access. Different Peer Servers may 
report different value for the same object at some 
moment due to asynchronous cache invalidation. 
Consistency level of non-transactional access is PRAM 
Consistency [11], using parallel computing terminology, 
i.e., writes made by each specific client are seen by others 
in the original order, but the global order is not 
guaranteed. 

In contrast, transactions in TODS are fully ACID but 
incur additional overhead. As previously mentioned, 
Bricks are designed to be transactional. So transactions 
involving one brick (local transaction) are easily done. 
Distributed transactions on multiple bricks are managed 
using the two-phase commit protocol. This approach is 
chosen in favor of global concurrency control because the 
2-phase commit protocol is not prohibitively expensive 
given the low latency property of modern LAN [5], and it 
is a relative simple protocol. TODS prefers to do local 
transaction whenever possible. E.g., multiple objects 
inserted in a transaction always go to the same brick. 
When distributed transaction must be done, the 
corresponding Peer Server acts as the transaction 
manager, and participating Bricks act as resource 
managers. All status information of ongoing distributed 
transactions is stored persistently in a simple database 
managed by the Peer Server, in order to make both Peer 
Server and Brick failures recoverable. 

Graceful recovery from all types of node failures is 
both very important and difficult to achieve. General 
solution to the problem is way beyond the scope of the 
project. So a few of assumption are made, which we 
think are reasonable in the cluster environment. First, it is 
assumed that node storage corruption never happens. 
Redundant storage like RAID can be used to approximate 
this. Second, network partition never occurs. LAN 
equipments are very reliable today and often redundant in 
clusters. However, the obviation of this problem is 
mainly due to its complexity. With these two assumptions, 
the possible failures are fortunately only those that do not 
cause data corruptions, such as power losses, software 
crashes and hardware faults. Below we discuss recovery 
processes of each component of a system. 

As previously mentioned, Meta-Servers are replicated. 

Actually they are organized as a synchronized 
master-slave structure. Each update to its data is 
synchronous distributed from the master to all the slaves. 
In case that the master fails, a new master will be elected 
immediately to take the place. And the failed Meta-Server 
simply joins the replication group again after it is 
repaired. Its data store is then updated to current state 
before put into work again. 

TODS managed to recover distributed transactions 
mainly with the help of persistent transactions state Peer 
Servers maintain. It contains the states of each distributed 
transaction and its corresponding local transactions. 
When one brick server fails, during its restarting process, 
it will detect whether there are unresolved distributed 
transactions. If there is any, it will notify the related Peer 
Servers with broadcasting. These Peer Servers in turn 
send commit or rollback commands to the Brick 
regarding these transactions and finally put the Brick 
back to normal operations. 

Another simpler case is Peer Server failures. When a 
failed Peer Server restarts, it checks its transaction state 
store and re-commits all distributed transactions in 
committing state and rolls back all other transactions 
before that state. 

4.6  Object State Maintaining 

Every persistent object is stored within Bricks as a 
key-value pair, with its OID as the key and content as the 
value. The value part is divided into two parts, a header 
and field values. The header is an index to every field, 
which is of variable length, for fast lookup. Primitive 
field types such as numbers, strings and dates are 
embedded in the data block. Certain collection types such 
as lists, sets and hash tables which are supported by 
standard Java library are also embedded. Other 
user-defined persistent objects referenced by this object 
are represented by its OID. 

Class definitions and hierarchy of all user classes in 
each Object Space are maintained by the Meta-Server. 
The record of each class contains the names and types of 
all persistent fields, plus the Class ID of the parent class, 
if there is one. The class hierarchy is built from all the 
records at start-up time of the Meta-Server and 
maintained in memory. It is used mostly to support class 
extents (enumeration of all objects of the same class), 
which should sometimes return all objects of the class 
and its descendent classes. 
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During operations like object storing and fetching, the 
composing and decomposing of data blocks is done by 
TODSLib, where Peer Servers and Bricks do not care 
about the structure of data blocks. This makes the system 
behave like a scalable distributed hash table [5]. For other 
operations like queries, Peer Servers and Bricks access 
the internals of the data block. Without knowing about 
class meta-data, Bricks are able do simple and fast 
filtering of objects with the help of the header. Peer 
Servers access fields with the class meta-data they get 
from the Meta-Server. We found this layered data access 
approach a good trade-off between flexibility and 
efficiency. Every component in the system gets 
reasonable knowledge of structures of data and does no 
redundant work like repetitively packaging and 
un-packaging an object. 

Inside user service processes, read and write to any 
persistent data object should be tracked. As mentioned in 
4.2, these are done by online addition to the binary code 
of user objects. Figure 7 shows part of the de-compiled 
code of the enhanced Point class as shown in figure 5. 

class Point implements 
javax.jdo.PersistenceCapable 
{ 
  ... 
 
  public int getX() { 
    return jdoGetPoint_x(this); 
  } 
 
  public void setX(int i) { 
    jdoSetPoint_x(this, i); 
  } 
 
  private static int jdoGetPoint_x(Point point) { 
    if(point.jdoFlags <= 0) 
      return point.x; 
    int i = jdoInheritedFieldCount + 0; 
    if(point.jdoStateManager.isLoaded(point, i)) 
      return point.x; 
    else 
      return 
point.jdoStateManager.getIntField(point, i, 
point.x); 
  } 
 
  private static void jdoSetPoint_x(Point point, 
int i){ 
    if(point.jdoFlags == 0){ 
      point.x = i; 
      return; 
    } else { 
      point.x = 
point.jdoStateManager.setIntField(point, 
jdoInheritedFieldCount + 0, point.x, i); 
      return; 
    } 
  } 
 
  ... 

} 

Figure 7 De-compiled code of enhanced Point class 

Although there are lots of details under the scene, the 
general idea is clear. Binary code of the user class is 
modified before loading to implement a specific interface 
javax.jdo.PersistenceCapable, which works 
with other parts of TODSLib to track the state of 
persistent objects. Many of user operations finally 
translate into command messages being sent to Peer 
Servers and result messages back from them, all without 
a single line of hand-written code by user. 

TODSLib maintains soft state with the Peer Server it 
connects to. Knowledge about meta-data and persistent 
objects are often cached by TODSLib. But if the Peer 
Server fails, TODSLib simply fails all the active 
transactions and connect to another Peer Server. The 
service will continue to run, although some users may 
need to retry the failed transactions. 

4.7  Query 

The simplest form of a query is accessing a class 
extent. Every persistent object in a Brick has its CLID as 
a secondary index in the underlying Berkeley DB table. 
So it is straightforward to iterate over all objects of a 
certain class by look them up via the CLID of the class. 
This is done by using a cursor supported by Berkeley DB. 

A real query contains a candidate extent or collection, 
a Boolean filter string, parameters and unbound variables. 
The query interface is more programmatic where users 
call methods to define each of the above elements, rather 
than declarative where user use a string to specify all 
these elements which is the case with SQL. This 
apparently saves some parsing overhead. The query is 
first translated into a TODSQuery object. If the query is 
simply against a collection of in-memory objects, it is 
immediately done by TODSLib, using a simple iteration 
method, within the service process. For most cases the 
query will be against a class extent residing on the Peer 
Server. Then the TODSQuery object is sent to the Peer 
Server for execution. At the Peer Server, the query is 
decomposed into two parts, one is simple filters like the 
second field equals "Mary", and the other is the 
remaining more complex filters such as navigations 
(filters regarding referenced objects). The former is sent 
to the related Bricks, which in turn return satisfying 
objects. The later set of filters are then applied on them 
by the Peer Server to get the final result set. 

Currently Bricks do not maintain indexes. Thus all 
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queries are executed with linear scanning. Introduction of 
indexing support is rather straightforward and will 
probably be done in later versions of TODS. 

4.8  Cache 

Caches are maintained by components of TODS to 
improve performance. Figure 8 shows how they interact. 
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Figure 8 Cache Interactions 
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The Transaction Cache (TX Cache in the figure) caches 

objects during the process of a transaction. It improves 
transactional access performance by avoiding repetitive 
fetching the same object within a single transaction. The 
cache is emptied when the transaction is finished. 
Subsequent read requests will go directly to the Bricks. 

The Object Cache on each Peer Server serves to 
improve non-transactional performance. Transactional 
operations just ignore this cache. It is essentially a hash 
table with size constraint and LRU replacement policy, 
mapping OIDs to object data blocks. A non-transactional 
read will first look at this cache. If a matching record is 
found, a network message exchange with the Brick and a 
disk read will be saved. Due to the fact that service 
instances and their Peer Servers are often on the same 
node, the overhead of a read operation that hits the 
Object Cache can be as low as a local IPC call such as a 
shared memory access. 

A cache directory is maintained at each Brick to ensure 
that copies of objects in corresponding Peer Servers are 
up to date. It tracks which Peer Servers cache which 
objects and invalidates the copies if they are updated. 

How to efficiently maintain the validity of this dir is a 
subtle problem. If a lot of traffic is used to maintain it, 
the benefits of the Object Cache will be compromised. 
However the directory is allowed to contain some 
redundant items, i.e., a cache item that does not exist on a 
Peer Server. This property is exploited to reduce the 
maintaining cost. Rather than sending notification as 
separate messages, Peer Servers piggyback all 
notifications about cache replacement with normal Brick 
request messages. Although this results in some harmless 
inaccuracy in the directory, total message counts deceases 
substantially, thus network traffic is reduced. 

Bricks also maintain Buffer Caches which are 
page-based caches for table files. This is effective for 
both transactional and non-transactional operations. 
Although the underlying OS often has its own buffer 
cache, it still makes sense to use our own because without 
it, every read operation will result in a system call, which 
incurs the overhead of CPU entering and quitting kernel 
mode. So we prefer to use our own application level 
buffer cache and bypass the OS buffer cache if possible, 
using the Direct I/O or Raw I/O features which are 
available on many systems. 

4.9  To Fail-Stop or Not? 

Sometimes a trade-off between availability and 
consistency must be made about a clustered Internet 
service. Letting the service run when some part of the 
storage fails will certainly improve availability, but will 
also potentially confuse the users or corrupt existing data 
if the service logic is not designed very carefully. 
Consider the example of an online directory. If it 
continues running after part of the storage becomes 
unavailable, some items will mysteriously disappear, 
which is confusing. Moreover, data corruption may occur 
if, for example, a sub-category with the same name as an 
existing but currently unavailable one is created. 

However, the counterpart – fail-stop operation also 
does not always work. Consider a clustered Web-mail 
system with a lot of nodes. It is totally intolerable that the 
system should become completely unavailable if one 
storage node fails. Thus TODS supports both types of 
operation. If configured to run after partial failure, the 
service will be notified when failure happens and 
recovers. If fail-stop is enabled, TODS simply fails if any 
part becomes unavailable. 

Replication may be the answer to the above dilemma. 
But it may not be practical for a large part of Internet 
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services because of the multiplied cost. Replication of 
user data is not yet implemented in TODS but should be 
relatively easy if replication of entire Bricks were to be 
done, which could be done transparently to above layers. 

5  Performance 
Performance experiment results are presented in this 

section. Our test environment is a 36-node server cluster. 
Each node is equipped with 4 Intel Pentium III Xeon 
processors at 750 Mhz, 1 GB of RAM and a 36 GB 
10000 RPM SCSI disk. The network is 100M fast 
Ethernet. All nodes run Redhat Linux 7.2 with stock 2.4.7 
enterprise kernel. TODS and test programs were run with 
Sun JDK 1.4.0-b92 for x86 Linux. All tests had a 
warm-up period of 1 minute and test period of 5 minutes. 
Each test was run 3 times and averages were taken. 

5.1  In-Memory Reads 

In this test, a special version of Brick is used, which 
keep all data in a simple in-memory hash table, instead of 
Berkeley DB tables. The test is designed to measure the 
communication overhead of the system and maximum 
scalability without considering disk I/O. We ran one copy 
of Brick, Peer Server and the test program on each of the 
nodes. All test programs connect to local Peer Servers 
and each Peer Server connect to all Bricks by 
round-robin. The object size is about 1KB. Results are 
shown in figure 9. The results show that the system is 
nearly linear scalable, with max throughput for our 36 
cluster as 11,160 reads/sec.  

Another test is performed to measure performance of 
reading objects of different sizes (1KB – 128KB). All 36 
nodes were used in this test. The results are shown in 
figure 10 and 11. Briefly, for 1KB objects 11,160 reads 
can be done a second with payload bandwidth of 11MB/s, 
and for 128KB objects, 1,332 reads with payload 

bandwidth of 170MB/s. This ideal performance is 
adequate for any conceivable Internet services apart from 
media and file services. 

5.2  On-Disk Reads 

This test is closer to actual operational environment 
than the first one. To approximate real-world workload, 
we first populated each of the Bricks with 5000 objects of 
the object length being tested. Then we access these 
objects randomly by Object ID we gather when inserting 
them. Although random access is not a good "real-world" 
pattern, it effectively shows the bottom-line performance 
we should expect. The Object Caches in Peer Servers are 
turned off to show raw Brick read performance. In figure 
12 and 13, the system generate throughput at about 1/3 of 
the In-Memory throughput. It completes as many as 2740 
reads of 1KB object in a second. As object size increases, 
payload bandwidth increases quickly, to 46MB/s when 
object size is 128KB. This throughput result is satisfying. 
Since actual work-load usually has good locality, the 
efficiency of the Buffer Cache will be much better, thus 
overall throughput higher. 

5.3  Cache-Hit Reads 
To test the effectiveness of Object Caches in Peer 

Servers, we modified the Peer Server to report all read 
requests as hitting the cache. With the same configuration 
as the previous tests, we get the results shown in figure 
14 and 15. For 1KB objects 13,392 reads per second with 
payload bandwidth of 13MB/s, and for 128KB objects, 
1,566 reads with payload bandwidth of 200MB/s. These 
figures are about 20% more than those in the in-memory 
test and 4 times of those in the on-disk test. This shows 
that hitting the Object Cache gains substantial throughput 
for reduced network overhead and disk I/O. 

5.4  Transactional Writes 
Transaction performance is directly tied to disk write 

performance because they include synchronous writes to 
the log file. Here we test inserting objects into Bricks by 
transactions. In each transaction, we insert four objects 
that are about 2K in size totally. These transactions are 
done locally on Bricks because as we mentioned above, 
TODS prefers to do local transactions whenever possible. 
From the results shown in figure 15, we can see that the 
transaction performance grows linearly with Brick 
number, just as we expected. When all 36 Bricks 
participate in, 396 transactions can be done in a second.  
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Figure 10 In-memory Read Throughput Figure 11 In-memory Read Payload 

Figure 14 Cache-hit Read Throughput Figure 15 Cache-hit Read Payload 
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Figure 12 On-disk Read Throughput Figure 13 On-disk Read Payload 
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5.5  Distributed Transactions 

Distributed transactions incur additional overhead of 
network communication and persistent transaction state 
maintaining. The Peer Server is modified to put 
subsequent inserted objects into different Bricks, thus all 
transaction inserting more than one object becomes 
distributed. We rerun the last test with a different 
configuration – as Bricks are added in, a Peer Server is 
also run on the nodes, and multiple copies of the test 
program is run simultaneously. This avoids that Peer 
Servers maintaining transaction state become bottlenecks. 
The results are shown in figure 16. The performance is 
roughly 1/3 of that of local transactions. 

6  Experience with TODS 
One "real" service we have built with TODS is a 

simple Web-based music jukebox service. Registered 
users can upload their music, browse the category with 
artist/album/genre, build play-lists and listen to them. As 
an experiment to compare the user interface of TODS and 
RDBMS, two undergraduates with intermediate Java skill 
and no experience of JDBC (Java API to RDBMS) or 
JDO were invited to write it, using JDBC and JDO, 
respectively. The framework code, E-R graph of the data 
model and HTML template pages were already done. It 
comes out that the JDO version took half the time of the 
JDBC version to write (about 20 hours v. 40 hours) and 
the total lines of code is about 15% less. This 
demonstrates that the TODS user interface is both easy to 
learn and productive, compared to RDBMS. 

7  Future Work 
There are many issues not addresses in current version 

of TODS. Large block of data (like a PDF document, a 
TAR archive) are not handled efficiently. They are loaded 
totally into memory if managed by TODS. A stream 
oriented access method (like that of files) is more 
desirable. Garbage collection of persistent objects is not 
implemented. Thus users have to explicitly delete useless 
objects. Schema evolution is also not supported now, 
which is very important for long-run data management 
systems. Other interesting topics include implement more 
transports such as one based on VIA [12] and one based 
on local shared memory messaging, and making the 
Object Caches inside difference Peer Servers cooperate to 
further improve hit rate, i.e. one Peer Server accessing 
another one’s cache. 

8  Conclusion 
In this paper, we present the design and 

implementation of TODS, a cluster storage platform 
specifically designed for Internet services. It is designed 
with the requirements of scalable services in mind and 
appeals to many advantageous properties of modern 
server clusters. A decentralized architecture is used which 
proves to be very scalable and efficient. The user 
interface of TODS implements transparent persistence 
which relieves developers completely from writing I/O 
code. Different levels of consistency are supported that 
makes TODS suits the requirements of different services. 
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