
 1

TODS: Cluster Object Storage Platform Designed for Scalable
Services

Feng Zhou, Chao Jin, Yinghui Wu, Weimin Zheng
{zhoufeng00, jinchao99, wuyinghui01}@mails.tsinghua.edu.cn, zwm-dcs@tsinghua.edu.cn

Dept. of Computer Science and Technology, Tsinghua University
100084, Beijing, PR China

Abstract
In this paper we present the design and implementation of
Tsinghua Object Data Store, a cluster object storage
system to support the building of scalable services.
TODS provides a unified, transparent and object-oriented
view of the storage devices of the whole cluster, which
greatly simplifies clustered service development. In the
meantime, it is designed to be very scalable and efficient.
Services built on it simply inherit these properties and
become scalable too. TODS also supports ACID
transactions, which facilitates the building of complex
transactional services. TODS abstracts away from service
logic most complexities of data management, which has
often become major obstacles for developing high quality
Internet services. The design principles, architecture and
implementation of TODS are discussed. In our
performance experiments, the system scales smoothly to
a 36-node server cluster and achieves 11,160 In-memory
reads/sec and 396 transactions/sec. We also demonstrate
that the user interface is significantly easier to use than
that of RDBMS by a comparative experiment.

1 Introduction
Server cluster is a natural platform for building

large-scale Internet services [1]. Clusters are
incrementally scalable, inherently parallel and easily
made fault-tolerant. Recent years have already seen lot of
successful scalable Internet services like Google [2] and
Yahoo that are built with clusters. However, building
services has never been an easy task. One of the most
challenging problems is data management. The data store
must be scalable, efficient, easy to use and tolerant to
node failures. Unfortunately, most current clustered
services use home developed service-specific solutions to
achieve these properties. For example, the Porcupine
clustered email system [3] managed to achieve the above
properties by using its own distributed storage manager

and doing replication of critical data all by its own.
Although these techniques do solve the problem, this
approach mixes application logic with low-level data
management details, thus make the code neither portable
nor easy to maintain as the services evolve. It is desirable
that a separate, reusable data management layer exists to
abstract away all the complexities and let developers
focus on service logic.

The separation of data management from application
logic is by no means a new idea. RDBMS and distributed
file systems are standard examples of it. However, the
status quo of Internet service construction described
above reflects the fact that these standard data
management means do not fit into the clustered service
scenario well.

In this paper we present Tsinghua Object Data Store,
our attempt to build an object-oriented data management
layer as a cluster infrastructure software, specifically for
the construction of Internet services. It behaves as a
scalable and fault-tolerant object store with transaction
support. Moreover, it supports transparent persistence in
the Java programming language. User applications
written in Java can transparently access objects stored in
a TODS system, which means that application developers
are completely freed from writing code to make his data
objects persistent. Objects are automatically fetched from
store when they are accessed, and modified objects are
automatically written back. The client interface is
compatible with Java Data Objects API [4], which is the
emerging standard for transparent data access in Java.

Behind the scene of the easy-to-use interface, TODS
maintains the consistent shared state of the cluster store
in a scalable and fault-tolerant way through decentralized
software architecture. It also appeals to properties of
clusters such as high speed, low latency interconnection
and incremental scalability. Well-known characteristics of
Internet services are kept in mind when designing TODS,
including huge data volume, relatively small data unit
size, high concurrency, good access locality and

 2

diversified consistency model requirement.

2 TODS Overview
A TODS system is defined as a self-contained data

management layer running on a server cluster to handle
storage requests of Internet services running on the same
cluster. Figure 1 shows how services interact with TODS.

Peer Server Peer Server

TODS System

Figure 1 TODS Overview

… … …

Service

TODSLib

Service

TODSLib

Service

TODSLib

Services connect to TODS components known as Peer
Servers to access data. They are called Peer Servers
because they are inherently identical to each other from
users' view, each presenting a single image of the whole
TODS system and they communicate with each other in a
peer-to-peer style. There are also other components (the
lower three blocks), which the service instances do not
connect to directly.

Within the service process, a library named TODSLib
maps user API calls to messages sent to Peer Servers and
parse results from them. Currently a Java version of
TODSLib is implemented. As mentioned before, it
implements transparent persistence and is compliant with
the Java Data Objects API.

From a functional point of view, TODS provides
similar capabilities found in RDBMS and distributed file
systems. RDBMS provides completely self-contained
data management capacities and strict consistency
guarantee to users. Distributed files systems, on the other
hand, provide distribution abstraction and sometimes
fault-tolerance support, which are very important
properties to Internet services.

However, for Internet services, it is argued that
RDBMS (and also parallel RDBMS) are often too
expensive, provides overly powerful semantic guarantees
and employs generality such as SQL at the cost of
performance [5]. Another concern raised by researchers is
the impedance mismatch between relational databases
and object-oriented programming languages [6].
Application developers are forced to write repetitive and

error-prone code to covert data from a database record to
an in-memory object and vice versa. On the other hand,
distributed file systems are often considered too general
in the sense that the system knows nothing about the
structure of user data, thus leaving all the work of
organizing, accessing and querying data to application
developers. Another important drawback of distributed
file systems is the lack of transaction support, forcing
developers to use ad-hoc ways such as custom locking
servers to maintain data consistency under concurrent
access.

The remaining of the paper is organized as follows;
Section 3 of this paper describes related work. Section 4
presents design principles, architecture and
implementation of TODS. Section 5 presents
performance results. Section 6 discusses application
examples. Section 7 talks about future work and section 8
concludes this paper.

3 Related Work
TODS incorporates many ideas from previous research

work that are not aimed directly at Internet services.
Shore [7] is a well-known object storage repository built
to support large applications such as Geographic
Information Systems and satellite data repositories. Also
using decentralized cluster architecture, Shore provides
good scalability and availability. Shore provides
OODB-like features such as a type system and
transaction support. However, access to persistent objects
in Shore is not transparent, as in TODS. Users have to
explicitly retrieve every object they use and have to call a
method to notify the update of an object. Second, Shore
has its own data definition language (SDL) and statically
compiles SDL files to import user classes, while TODS
uses binary code processing to extract meta-data from
user classes, so users never have to maintain two copies
of class definition, one in SDL files and the other in C++
source files.

Distribution Data Structure (DDS), described in [5],
stores distributes data structures within a cluster. DDS
shields service authors from the complexities of cluster
storage management. The DDS design focuses on
availability, performance and scalability issues and is
however rather simplified on issues about data model and
consistency. The most useful data structure it supports is
a distributed hash table. All the inner structures of data
items are left to users to organize. Update of one data
item is atomic, but transaction is not supported.

 3

Active Disks [8] is a research effort to exploit
computing power of embedded processors on disks. The
most obvious use is to do database queries. This greatly
improves scalability compared to traditional server-based
systems. Actually the local storage manager in TODS
(called a Brick) is much like an Active Disk. It does
primitive data management tasks such as get, put and
filtering. Although currently Brick is implemented as a
software daemon, it is an interesting topic to embed it
into a device or even a powerful disk drive.

4 TODS Design and Implementation
4.1 Design Principles

Several principles are followed when we design
TODS.

Separation of concerns. Apart from abstraction of data
management tasks from service logic, TODS itself is
designed to be layered and modular, with different level
of abstraction for each layer and clear interface between
modules.

Abstraction without losing key performance hints.
Performance hints such as which objects are physically
"near" are propagated to the more "abstract" upper layer,
which uses these hints to more effectively arrange its
work.

Exploiting properties of clusters, such as that network
partition never happens, network RAM is faster than
local disk, all nodes are under central control, etc..

4.2 TODS Architecture

The structure of an Internet service using TODS as
storage layer is shown in Figure 2. Figure 3 shows the
distribution of components on a cluster running TODS
and an Internet service.

The clients in Figure 2 can be Web browsers, email
clients or other applications. They connect to service
instances through the Internet by Internet application
protocols such as HTTP, IMAP, etc.

Services are multiple instances of the same service.
Reverse proxy or DNS rotating can be used to make the
cluster nature of the service transparent to clients.
Techniques such as IP take-over by ARP spoofing [9] can
be exploited to hide transient service failures, as long as
service instances maintain no state or only soft state that
can be recovered easily by another service instance from
persistent data.

Peer
Server

Brick

Client

Brick Brick Brick

Peer
Server

Peer
Server

Service
TODSLib

Service
TODSLib

Service
TODSLib

Client Client Client

Internet

SAN

SAN

Cluster

Meta-Server Meta-Server

Figure 2 TODS Architecture

… …

Service

TODSLib

Peer Server

Brick Brick
Service

TODSLib

Peer Server

SAN

TODS Node

Meta-Server

Figure 3 Typical TODS Configuration
Peer Servers are connection points into the TODS

system. Each Peer Server presents the global image of the
whole TODS system, abstracting the internal distribution
of data. So clients connecting to any one of the Peer
Servers see all data objects in the system. Peer Servers
also act as transaction managers in distributed
transactions. The first reason for using more than one
peer server is that it prevents Peer Server from becoming
performance bottlenecks, which is often the case in
classic client-server systems. The second reason is for
increased availability. The client library can transparently
switch to another Peer Server in case one fails. Another
reason is for efficiency. If the service instance and Peer
Server are running on the same node, which is often true,
they can communicate with some relative faster means
than network, such as a shared memory block.

Bricks are single-node transactional data stores. They
manage local data in a key-value fashion, and provide
local transaction and primitive query functionalities.
Brick is currently implemented upon the Berkeley DB

 4

[10] library. With advanced features such as XA
transaction support and replication, and a long evolving
history, Berkeley DB provides a very stable foundation
for our work. Peer Servers and Bricks also manage
directory-based caches to improve non-transactional data
access performance. Peer Servers cache objects accessed
frequently in memory. Each Brick maintains a directory
about which Peer Servers currently cache which objects,
and invalidates data on corresponding Peer Servers when
certain objects are updated.

The Meta-Server maintains system configuration and
meta-data. It is replicated and thus assumed fault-tolerant,
providing a safe place for critical global information.
System configuration includes location (IP, port) and
parameters of all components such as Peer Servers and
Bricks. This ensures centralized management of the
whole system. Meta-data includes information about
name space structure, users and groups information,
persistent class list and meta-data (structure) for each
user class. Current implementation is based on Java
Remote Method Invocation (RMI), which is similar to
RPC. Data replication is implemented using the built-in
replication feature of Berkeley DB (version 4).

TODSLib is a Java class library that service
developers use to access persistent objects in TODS. It
implements the transparent persistence logic and
communicates with Peer Servers. To make access to
external objects stored in TODS identical to accessing
in-memory objects, synthetic code is inserted into user
classes to track status change and intercept certain
operations such as getting a referenced object that is not
currently in memory. The above process of automatically
modifying existing code is often mentioned as code
enhancing. Thanks to the capabilities of modern Java
Virtual Machines and the simple format of Java
byte-code, this process is done on-the-fly by TODSLib at
run-time, without any modification to the Virtual
Machine or user code. Using a custom class loader,
TODSLib enhances every persistent class before actually
loading it, thus making the process completely
transparent to users.

TODSLib communicates with Peer Servers using a
message-oriented protocol. Consecutive requests and
responses are grouped to form messages to be sent over
the wire. The underlying network protocol is pluggable.
Currently we have implemented the transport layer on
both standard TCP and the GM messaging protocol of
Myricom, with the latter delivering much shorter latency.

The encoding/decoding logic and request handling
framework of this process are encapsulated in a module
which is reused in both "TODSLib-Peer Server" and
"Peer Server-Brick" communication.

4.3 Data Model and User Interface

Objects managed by TODS are put into name spaces
known as Object Spaces. Each object space has its own
set of class hierarchy and objects. An Object Space is
analogous to a database or a table space in RDBMS, or a
directory in file systems. The list of all Object Spaces,
class meta-data and permission rules of each Object
Space are all maintained by the Meta-Server. Data of an
Object Space are stored on a subset of all the Bricks,
whose list is managed by the Meta-Server. However, a
Brick may be well shared by multiple Object Spaces.

Object (or persistent object) is the granularity of most
operations in TODS. Every persistent object is associated
with a globally unique id (OID). An object has a number
of value fields and can reference other objects. Figure 4
illustrates an example of object references. A and B are
active persistent objects, with A referring to an inactive
one, C. D and E are transient objects not currently
managed by TODSLib. However, they will become
persistent by a make persistent call to TODSLib.

TODSLib

Service Instance

A
B

C B

E

D

A

TODS Store

Figure 4 Objects references

When a transient object is made persistent, all objects
reachable from it are also made persistent (persistence by
reachability). Persistent objects are long-lived and
independent of life-cycles of the service instances or
TODS runtime. Any modification to the object will be
written to the store implicitly at some time (e.g., when
transaction is committed). Persistent objects are loaded
into memory automatically when needed.

There are several ways to retrieve objects from the

 5

store. The simplest way is to access referenced objects
from existing ones, e.g., accessing employee objects from
the containing department object. It works as it should.
Queries or class extents are used to get the first group of
objects. TODS implements the simple query interface
defined by JDO. A query is defined by a query filter
against a collection of candidate objects of a certain class,
with other elements such as parameters and unbound
variables. Class extent is actually a degenerated query,
which lists all objects of a certain class. Apparently it
provides better performance for enumerating operations
compared with query.

import javax.jdo.*;
import edu.tsinghua.tods.client.TODSPMF;
import java.util.Iterator;

public class Simple {
 public static void main(String[] args) {
 // -1- Initialize TODSLib
 // Persistence Manager Factory, analagous to a
connection factory of RDBMS
 TODSPMF pmf = new TODSPMF("tods://127.0.0.1",
"zf", "_password_");
 // Persistence Manager, analagous to a
connection of RDBMS
 PersistenceManager pm =
pmf.getPersistenceManager();

 // -2- Insert a Point into the store
 Transaction tx = pm.currentTransaction();
 tx.begin();
 Point p = new Point();
 p.setX(5);
 p.setY(10);
 pm.makePersistent(p);
 tx.commit();

 // -3- List all Points in the store
 Extent e = pm.getExtent(Point.class, false);
 for (Iterator it = e.iterator(); it.hasNext();)

{
 Point p2 = (Point)it.next();
 System.out.println("X="+p2.getX()+",
Y="+p2.getY());
 }

 // -4- Close the Persistence Manager
 pm.close();
 }
}
// User data class
class Point {
 private int x;
 Private int y;

 public int getX() { return x; }
 public int getY() { return y; }
 public void setX(int v) { x = v; }
 public void setY(int v) { y = v; }
}

Figure 5 Simple Java code example using TODS

A simple code example of using TODS is shown in

figure 5. Actually it uses the Java Data Objects API
which is implemented by TODSLib.

After initializing the TODSLib, the above example
first inserts a Point object, using a transaction. Then it
lists all Point objects in the store.

4.4 Object Identification and Locating

An Object ID is a 128bit integer, whose structure is
shown in figure 5. Object Space ID (OSID) indicates
which Object Space this object belongs to. Class ID
(CLID) references to class definition in the Meta-Server,
it is assigned when first object of its class is inserted into
the system. Node ID (NID) denotes the location of the
object, while Serial Number is the local ID of the object.

Misc.* & Reserved

Class ID (CLID)

 32 12 20 16 48

Node ID (NID)

Object Serial Number (SN)

Figure 6 128bit OID format
* E.g. One bit used to indicate temporary OIDs

Object Space ID (OSID)

One thing to notice is that the OID is a physical ID, in
the sense that it indicates on which node the object is
located. The system can directly find the object just by
the OID. This contrasts to the alternative approach of
using a logical object ID or "path" and thus needs to look
up the real location of objects before accessing them,
which introduces more overhead and the problem of
effectively and coherently caching the lookups. Logical
ID or text path are often introduced for user friendliness
and location transparency. The former is not a problem in
TODS because TODSLib completely hides from users
the details of fetching and storing persistence objects.
OIDs are not even seen by them. The latter reason is most
justified for wide-area distributed systems, where nodes
and network failures and changes are common. As TODS
is designed for well managed cluster environment, it is
found that an OID with more information greatly
simplifies system design and improves performance.

4.5 Data Consistency, Transactions and
Failure Recovery

TODS supports non-transactional and transactional

 6

modes of access. It is determined by whether data
accesses are enclosed in a transaction. For
non-transactional accesses, data caching on Peer Servers
are enabled, which results in much better performance.
However there is no guarantee about data consistency
under concurrent access. Different Peer Servers may
report different value for the same object at some
moment due to asynchronous cache invalidation.
Consistency level of non-transactional access is PRAM
Consistency [11], using parallel computing terminology,
i.e., writes made by each specific client are seen by others
in the original order, but the global order is not
guaranteed.

In contrast, transactions in TODS are fully ACID but
incur additional overhead. As previously mentioned,
Bricks are designed to be transactional. So transactions
involving one brick (local transaction) are easily done.
Distributed transactions on multiple bricks are managed
using the two-phase commit protocol. This approach is
chosen in favor of global concurrency control because the
2-phase commit protocol is not prohibitively expensive
given the low latency property of modern LAN [5], and it
is a relative simple protocol. TODS prefers to do local
transaction whenever possible. E.g., multiple objects
inserted in a transaction always go to the same brick.
When distributed transaction must be done, the
corresponding Peer Server acts as the transaction
manager, and participating Bricks act as resource
managers. All status information of ongoing distributed
transactions is stored persistently in a simple database
managed by the Peer Server, in order to make both Peer
Server and Brick failures recoverable.

Graceful recovery from all types of node failures is
both very important and difficult to achieve. General
solution to the problem is way beyond the scope of the
project. So a few of assumption are made, which we
think are reasonable in the cluster environment. First, it is
assumed that node storage corruption never happens.
Redundant storage like RAID can be used to approximate
this. Second, network partition never occurs. LAN
equipments are very reliable today and often redundant in
clusters. However, the obviation of this problem is
mainly due to its complexity. With these two assumptions,
the possible failures are fortunately only those that do not
cause data corruptions, such as power losses, software
crashes and hardware faults. Below we discuss recovery
processes of each component of a system.

As previously mentioned, Meta-Servers are replicated.

Actually they are organized as a synchronized
master-slave structure. Each update to its data is
synchronous distributed from the master to all the slaves.
In case that the master fails, a new master will be elected
immediately to take the place. And the failed Meta-Server
simply joins the replication group again after it is
repaired. Its data store is then updated to current state
before put into work again.

TODS managed to recover distributed transactions
mainly with the help of persistent transactions state Peer
Servers maintain. It contains the states of each distributed
transaction and its corresponding local transactions.
When one brick server fails, during its restarting process,
it will detect whether there are unresolved distributed
transactions. If there is any, it will notify the related Peer
Servers with broadcasting. These Peer Servers in turn
send commit or rollback commands to the Brick
regarding these transactions and finally put the Brick
back to normal operations.

Another simpler case is Peer Server failures. When a
failed Peer Server restarts, it checks its transaction state
store and re-commits all distributed transactions in
committing state and rolls back all other transactions
before that state.

4.6 Object State Maintaining

Every persistent object is stored within Bricks as a
key-value pair, with its OID as the key and content as the
value. The value part is divided into two parts, a header
and field values. The header is an index to every field,
which is of variable length, for fast lookup. Primitive
field types such as numbers, strings and dates are
embedded in the data block. Certain collection types such
as lists, sets and hash tables which are supported by
standard Java library are also embedded. Other
user-defined persistent objects referenced by this object
are represented by its OID.

Class definitions and hierarchy of all user classes in
each Object Space are maintained by the Meta-Server.
The record of each class contains the names and types of
all persistent fields, plus the Class ID of the parent class,
if there is one. The class hierarchy is built from all the
records at start-up time of the Meta-Server and
maintained in memory. It is used mostly to support class
extents (enumeration of all objects of the same class),
which should sometimes return all objects of the class
and its descendent classes.

 7

During operations like object storing and fetching, the
composing and decomposing of data blocks is done by
TODSLib, where Peer Servers and Bricks do not care
about the structure of data blocks. This makes the system
behave like a scalable distributed hash table [5]. For other
operations like queries, Peer Servers and Bricks access
the internals of the data block. Without knowing about
class meta-data, Bricks are able do simple and fast
filtering of objects with the help of the header. Peer
Servers access fields with the class meta-data they get
from the Meta-Server. We found this layered data access
approach a good trade-off between flexibility and
efficiency. Every component in the system gets
reasonable knowledge of structures of data and does no
redundant work like repetitively packaging and
un-packaging an object.

Inside user service processes, read and write to any
persistent data object should be tracked. As mentioned in
4.2, these are done by online addition to the binary code
of user objects. Figure 7 shows part of the de-compiled
code of the enhanced Point class as shown in figure 5.

class Point implements
javax.jdo.PersistenceCapable
{
 ...

 public int getX() {
 return jdoGetPoint_x(this);
 }

 public void setX(int i) {
 jdoSetPoint_x(this, i);
 }

 private static int jdoGetPoint_x(Point point) {
 if(point.jdoFlags <= 0)
 return point.x;
 int i = jdoInheritedFieldCount + 0;
 if(point.jdoStateManager.isLoaded(point, i))
 return point.x;
 else
 return
point.jdoStateManager.getIntField(point, i,
point.x);
 }

 private static void jdoSetPoint_x(Point point,
int i){
 if(point.jdoFlags == 0){
 point.x = i;
 return;
 } else {
 point.x =
point.jdoStateManager.setIntField(point,
jdoInheritedFieldCount + 0, point.x, i);
 return;
 }
 }

 ...

}

Figure 7 De-compiled code of enhanced Point class

Although there are lots of details under the scene, the
general idea is clear. Binary code of the user class is
modified before loading to implement a specific interface
javax.jdo.PersistenceCapable, which works
with other parts of TODSLib to track the state of
persistent objects. Many of user operations finally
translate into command messages being sent to Peer
Servers and result messages back from them, all without
a single line of hand-written code by user.

TODSLib maintains soft state with the Peer Server it
connects to. Knowledge about meta-data and persistent
objects are often cached by TODSLib. But if the Peer
Server fails, TODSLib simply fails all the active
transactions and connect to another Peer Server. The
service will continue to run, although some users may
need to retry the failed transactions.

4.7 Query

The simplest form of a query is accessing a class
extent. Every persistent object in a Brick has its CLID as
a secondary index in the underlying Berkeley DB table.
So it is straightforward to iterate over all objects of a
certain class by look them up via the CLID of the class.
This is done by using a cursor supported by Berkeley DB.

A real query contains a candidate extent or collection,
a Boolean filter string, parameters and unbound variables.
The query interface is more programmatic where users
call methods to define each of the above elements, rather
than declarative where user use a string to specify all
these elements which is the case with SQL. This
apparently saves some parsing overhead. The query is
first translated into a TODSQuery object. If the query is
simply against a collection of in-memory objects, it is
immediately done by TODSLib, using a simple iteration
method, within the service process. For most cases the
query will be against a class extent residing on the Peer
Server. Then the TODSQuery object is sent to the Peer
Server for execution. At the Peer Server, the query is
decomposed into two parts, one is simple filters like the
second field equals "Mary", and the other is the
remaining more complex filters such as navigations
(filters regarding referenced objects). The former is sent
to the related Bricks, which in turn return satisfying
objects. The later set of filters are then applied on them
by the Peer Server to get the final result set.

Currently Bricks do not maintain indexes. Thus all

 8

queries are executed with linear scanning. Introduction of
indexing support is rather straightforward and will
probably be done in later versions of TODS.

4.8 Cache

Caches are maintained by components of TODS to
improve performance. Figure 8 shows how they interact.

Buffer
Cache

Cache
Dir.

Object
Cache

Store Manager

Peer Server

Brick

Figure 8 Cache Interactions

TODSLib

Data Invalidation

Invalidation
BDB Store

Data

TX
Cache

Service Instance

The Transaction Cache (TX Cache in the figure) caches

objects during the process of a transaction. It improves
transactional access performance by avoiding repetitive
fetching the same object within a single transaction. The
cache is emptied when the transaction is finished.
Subsequent read requests will go directly to the Bricks.

The Object Cache on each Peer Server serves to
improve non-transactional performance. Transactional
operations just ignore this cache. It is essentially a hash
table with size constraint and LRU replacement policy,
mapping OIDs to object data blocks. A non-transactional
read will first look at this cache. If a matching record is
found, a network message exchange with the Brick and a
disk read will be saved. Due to the fact that service
instances and their Peer Servers are often on the same
node, the overhead of a read operation that hits the
Object Cache can be as low as a local IPC call such as a
shared memory access.

A cache directory is maintained at each Brick to ensure
that copies of objects in corresponding Peer Servers are
up to date. It tracks which Peer Servers cache which
objects and invalidates the copies if they are updated.

How to efficiently maintain the validity of this dir is a
subtle problem. If a lot of traffic is used to maintain it,
the benefits of the Object Cache will be compromised.
However the directory is allowed to contain some
redundant items, i.e., a cache item that does not exist on a
Peer Server. This property is exploited to reduce the
maintaining cost. Rather than sending notification as
separate messages, Peer Servers piggyback all
notifications about cache replacement with normal Brick
request messages. Although this results in some harmless
inaccuracy in the directory, total message counts deceases
substantially, thus network traffic is reduced.

Bricks also maintain Buffer Caches which are
page-based caches for table files. This is effective for
both transactional and non-transactional operations.
Although the underlying OS often has its own buffer
cache, it still makes sense to use our own because without
it, every read operation will result in a system call, which
incurs the overhead of CPU entering and quitting kernel
mode. So we prefer to use our own application level
buffer cache and bypass the OS buffer cache if possible,
using the Direct I/O or Raw I/O features which are
available on many systems.

4.9 To Fail-Stop or Not?

Sometimes a trade-off between availability and
consistency must be made about a clustered Internet
service. Letting the service run when some part of the
storage fails will certainly improve availability, but will
also potentially confuse the users or corrupt existing data
if the service logic is not designed very carefully.
Consider the example of an online directory. If it
continues running after part of the storage becomes
unavailable, some items will mysteriously disappear,
which is confusing. Moreover, data corruption may occur
if, for example, a sub-category with the same name as an
existing but currently unavailable one is created.

However, the counterpart – fail-stop operation also
does not always work. Consider a clustered Web-mail
system with a lot of nodes. It is totally intolerable that the
system should become completely unavailable if one
storage node fails. Thus TODS supports both types of
operation. If configured to run after partial failure, the
service will be notified when failure happens and
recovers. If fail-stop is enabled, TODS simply fails if any
part becomes unavailable.

Replication may be the answer to the above dilemma.
But it may not be practical for a large part of Internet

 9

services because of the multiplied cost. Replication of
user data is not yet implemented in TODS but should be
relatively easy if replication of entire Bricks were to be
done, which could be done transparently to above layers.

5 Performance
Performance experiment results are presented in this

section. Our test environment is a 36-node server cluster.
Each node is equipped with 4 Intel Pentium III Xeon
processors at 750 Mhz, 1 GB of RAM and a 36 GB
10000 RPM SCSI disk. The network is 100M fast
Ethernet. All nodes run Redhat Linux 7.2 with stock 2.4.7
enterprise kernel. TODS and test programs were run with
Sun JDK 1.4.0-b92 for x86 Linux. All tests had a
warm-up period of 1 minute and test period of 5 minutes.
Each test was run 3 times and averages were taken.

5.1 In-Memory Reads

In this test, a special version of Brick is used, which
keep all data in a simple in-memory hash table, instead of
Berkeley DB tables. The test is designed to measure the
communication overhead of the system and maximum
scalability without considering disk I/O. We ran one copy
of Brick, Peer Server and the test program on each of the
nodes. All test programs connect to local Peer Servers
and each Peer Server connect to all Bricks by
round-robin. The object size is about 1KB. Results are
shown in figure 9. The results show that the system is
nearly linear scalable, with max throughput for our 36
cluster as 11,160 reads/sec.

Another test is performed to measure performance of
reading objects of different sizes (1KB – 128KB). All 36
nodes were used in this test. The results are shown in
figure 10 and 11. Briefly, for 1KB objects 11,160 reads
can be done a second with payload bandwidth of 11MB/s,
and for 128KB objects, 1,332 reads with payload

bandwidth of 170MB/s. This ideal performance is
adequate for any conceivable Internet services apart from
media and file services.

5.2 On-Disk Reads

This test is closer to actual operational environment
than the first one. To approximate real-world workload,
we first populated each of the Bricks with 5000 objects of
the object length being tested. Then we access these
objects randomly by Object ID we gather when inserting
them. Although random access is not a good "real-world"
pattern, it effectively shows the bottom-line performance
we should expect. The Object Caches in Peer Servers are
turned off to show raw Brick read performance. In figure
12 and 13, the system generate throughput at about 1/3 of
the In-Memory throughput. It completes as many as 2740
reads of 1KB object in a second. As object size increases,
payload bandwidth increases quickly, to 46MB/s when
object size is 128KB. This throughput result is satisfying.
Since actual work-load usually has good locality, the
efficiency of the Buffer Cache will be much better, thus
overall throughput higher.

5.3 Cache-Hit Reads
To test the effectiveness of Object Caches in Peer

Servers, we modified the Peer Server to report all read
requests as hitting the cache. With the same configuration
as the previous tests, we get the results shown in figure
14 and 15. For 1KB objects 13,392 reads per second with
payload bandwidth of 13MB/s, and for 128KB objects,
1,566 reads with payload bandwidth of 200MB/s. These
figures are about 20% more than those in the in-memory
test and 4 times of those in the on-disk test. This shows
that hitting the Object Cache gains substantial throughput
for reduced network overhead and disk I/O.

5.4 Transactional Writes
Transaction performance is directly tied to disk write

performance because they include synchronous writes to
the log file. Here we test inserting objects into Bricks by
transactions. In each transaction, we insert four objects
that are about 2K in size totally. These transactions are
done locally on Bricks because as we mentioned above,
TODS prefers to do local transactions whenever possible.
From the results shown in figure 15, we can see that the
transaction performance grows linearly with Brick
number, just as we expected. When all 36 Bricks
participate in, 396 transactions can be done in a second.

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

5 10 15 20 25 30 35 40

R
ea

d
O

pe
ra

tio
ns

/s
ec

NBrick

Figure 9 In-memory Read Scalability

 10

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40

T
ra

ns
ac

tio
ns

/s
ec

NBrick

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100 120 140

R
ea

d
O

pe
ra

tio
ns

/s
ec

Object Size(KB)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

0 20 40 60 80 100 120 140

P
ay

lo
ad

 B
an

dw
id

th
(K

B
/s

ec
)

Object Size(KB)

Figure 16 Transactional Write

Figure 10 In-memory Read Throughput Figure 11 In-memory Read Payload

Figure 14 Cache-hit Read Throughput Figure 15 Cache-hit Read Payload

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20 40 60 80 100 120 140

P
ay

lo
ad

 B
an

dw
id

th
(K

B
/s

ec
)

Object Size(KB)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

0 20 40 60 80 100 120 140

R
ea

d
O

pe
ra

tio
ns

/s
ec

Object Size(KB)

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40

T
ra

ns
ac

tio
ns

/s
ec

NBrick

Figure 17 Distributed Transaction Scalability

Figure 12 On-disk Read Throughput Figure 13 On-disk Read Payload

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140

R
ea

d
O

pe
ra

tio
ns

/s
ec

Object Size(KB)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100 120 140

P
ay

lo
ad

 B
an

dw
id

th
(K

B
/s

ec
)

Object Size(KB)

 11

5.5 Distributed Transactions

Distributed transactions incur additional overhead of
network communication and persistent transaction state
maintaining. The Peer Server is modified to put
subsequent inserted objects into different Bricks, thus all
transaction inserting more than one object becomes
distributed. We rerun the last test with a different
configuration – as Bricks are added in, a Peer Server is
also run on the nodes, and multiple copies of the test
program is run simultaneously. This avoids that Peer
Servers maintaining transaction state become bottlenecks.
The results are shown in figure 16. The performance is
roughly 1/3 of that of local transactions.

6 Experience with TODS
One "real" service we have built with TODS is a

simple Web-based music jukebox service. Registered
users can upload their music, browse the category with
artist/album/genre, build play-lists and listen to them. As
an experiment to compare the user interface of TODS and
RDBMS, two undergraduates with intermediate Java skill
and no experience of JDBC (Java API to RDBMS) or
JDO were invited to write it, using JDBC and JDO,
respectively. The framework code, E-R graph of the data
model and HTML template pages were already done. It
comes out that the JDO version took half the time of the
JDBC version to write (about 20 hours v. 40 hours) and
the total lines of code is about 15% less. This
demonstrates that the TODS user interface is both easy to
learn and productive, compared to RDBMS.

7 Future Work
There are many issues not addresses in current version

of TODS. Large block of data (like a PDF document, a
TAR archive) are not handled efficiently. They are loaded
totally into memory if managed by TODS. A stream
oriented access method (like that of files) is more
desirable. Garbage collection of persistent objects is not
implemented. Thus users have to explicitly delete useless
objects. Schema evolution is also not supported now,
which is very important for long-run data management
systems. Other interesting topics include implement more
transports such as one based on VIA [12] and one based
on local shared memory messaging, and making the
Object Caches inside difference Peer Servers cooperate to
further improve hit rate, i.e. one Peer Server accessing
another one’s cache.

8 Conclusion
In this paper, we present the design and

implementation of TODS, a cluster storage platform
specifically designed for Internet services. It is designed
with the requirements of scalable services in mind and
appeals to many advantageous properties of modern
server clusters. A decentralized architecture is used which
proves to be very scalable and efficient. The user
interface of TODS implements transparent persistence
which relieves developers completely from writing I/O
code. Different levels of consistency are supported that
makes TODS suits the requirements of different services.

References
[1] Armando Fox and Steven D. Gribble and Yatin

Chawathe and Eric A. Brewer and Paul Gauthier.
Cluster-Based Scalable Network Services, In
Proceedings of the 16th ACM Symposium on
Operating Systems Principles, St.-Malo, France,
1997

[2] Mitch Wagner, Google Bets The Farm On Linux,
available at
http://www.internetweek.com/lead/lead060100.htm

[3] Yasushi Saito and Brian N. Bershad and Henry M.
Levy. Manageability, Availability and Performance
in Porcupine: A Highly Scalable, Cluster-based
Mail Service, Symposium on Operating Systems
Principles, 1999

[4] C. Russell, Java Data Objects 1.0 Proposed Final
Draft, JSR12, Sun Microsystems Inc., available
from http://access1.sun.com/jdo, 2001

[5] Steven D. Gribble and Eric A. Brewer and Joseph
M. Hellerstein and David Culler. Scalable,
Distributed Data Structures for Internet Service
Construction, 4th Symposium on Operating System
Design & Implementation, San Diego, 2000

[6] J. Chen and Q. Huang and A. Sajeev.
Interoperability between object-oriented
programming languages and relational systems,
Proceedings of TOOLS Conference, Melbourne,
1995

[7] Michael Carey, David DeWitt, Michael Franklin,
Nancy Hall, Mark McAuliffe, Jeffrey Naughton,
Daniel Schuh, Marvin Solomon, C.K. Tan,
Odysseas Tsatalos, Seth White, Michael Zwilling,
Shoring Up Persistent Applications, In Proceedings
of ACM-SIGMOD 1994 International Conference

 12

on Management of Data, Minneapolis, Minnesota,
1994.

[8] Riedel, E. and Gibson, G. Active Disks - Remote
Execution for Network-Attached Storage, Technical
Report CMU-CS-97-198, December 1997

[9] Wensong Zhang. Linux Virtual Server for Scalable
Network Services, Linux Symposium, Ottawa, 2000

[10] Sleepycat Software Inc., Berkeley DB
Programmer's Tutorial and Reference Guide,
available at www.sleepycat.com, 2001

[11] M. Raynal and A. Shiper. A Suite of Formal
Definitions for Consistency Criteria in Distributed
Shared Memories. ISCA Proceedings of the
International Conference PDCS, Dijon France,
pages 125--130, September 1996.

[12] Compaq Computer Corp., Intel Corporation,
Microsoft Corporation. Virtual Interface
Architecture Specification, Version 1.0. available
from www.viarch.org, 1997

