
XML as a Boxwood
Data Structure

Feng Zhou, John MacCormick, Lidong Zhou,
Nick Murphy, Chandu Thekkath
8/20/04

Overview
Goal: Make XML a native data structure of the
Boxwood storage virtualization system
Motivation:

Useful for users of Boxwood because XML is gaining
popularity as a way of storing and exchanging data
Validates the argument that the modular Boxwood
design facilitates construction of complex data
structures
Validates the design and implementation of the
Boxwood prototype

2

Boxwood overview

3

XML example
<?xml version="1.0" encoding="UTF-8"?>
<collection>

<recipe>
<title>Beef Parmesan with Garlic Angel Hair

Pasta</title>
<ingredient name="beef cube steak" amount="1.5"

unit="pound"/>
<preparation>

<step>
Preheat oven to 350 degrees F (175 degrees C).

</step>
</preparation>
<nutrition calories="1167" fat="23"

carbohydrates="45" protein="32"/>
</recipe>

</collection>

elements

attributes

text fragment

All called nodes in the XML data model

4

XML as a tree

collection

recipe

title ingredient preparation nutrition

“Beef …” step

“Preheat …”

5

Challenges in building a scalable XML store
Must support flexible access methods

XPath: file system path like queries
/collection/recipe[nutrition/@calories<1000]/title

XQuery: more complex SQL like queries
Large amount of documents
Large documents
Document mutation (e.g. node
insertions/removals)

6

Outline
Overview
XML to Boxwood mapping
XPath query processing
Evaluation

7

Numbering Scheme
XPath requires fast access to related nodes:
parent/children/sibling
Could be done by maintaining pointers to these
nodes but too much space overhead

At least 4 pointers needed (parent, first child, next
sibling, previous sibling)

XML db community proposed schemes to
number nodes in regular ways that make these
pointers unnecessary.
We use the numbering scheme used in the eXist
XML database.

8

Numbering nodes in the XML tree

Max fan-out

1collection

recipe

title ingredient preparation nutrition

9

“Beef …” step

“Preheat …”

4

1

1

2

3 4 5 6

1
7 9

13

8 10

11 12 14

Mapping to Boxwood
Basic Boxwood data structures

Chunks (variable-sized, “persistent malloc()”)
B-Tree (fixed-sized keys fixed-sized values)

10

XML store data structures

“recipe”

“doc2”

…

Structure Index
node id <chunk, off>

<collec.. <recipe> <title>

11

…

“Beef…” <ingredient>, name=…

Doc
Directory

…

Value Index (one per user-
defined index)

value <doc id, node id>*

Element Index
elem_name <doc id, node id>*

Data Chunks
Serialized XML nodes

B-Tree

Chunk

1
2
3
4
5

ingredient

Outline
Overview
XML to Boxwood mapping
XPath query processing
Performance and experience

12

XPath query processing
/collection/recipe[nutrition/@calories<1000]/title
XPath expressions

Path expressions: nutrition/@calories
Comparison expressions: nutrition/@calories<1000
Arithmetic expressions
…

13

Evaluating path expressions
Uses recently proposed XML query processing
techniques (Li&Moon, VLDB’01)
//book/chapter//figure[@title=“bird”] =

No query optimization yet

joins

14

figure[@title=“bird”]

chapterbook

child

descendant

selections

http://www.ida.liu.se/~tompa/databaser/relalg-lecture/huge-join.gif
http://www.ida.liu.se/~tompa/databaser/relalg-lecture/huge-join.gif
http://www.ida.liu.se/~tompa/databaser/relalg-lecture/huge-sigma.gif
http://www.ida.liu.se/~tompa/databaser/relalg-lecture/huge-sigma.gif
http://www.ida.liu.se/~tompa/databaser/relalg-lecture/huge-sigma.gif

Join algorithms
//book/chapter
Nested loop:

1. Find “book” elements by enumerating all elements
2. For each “book” element, enumerate all children and output

the ones named “chapter”

“Path join”: efficient join operations utilizing indexes
1. A={IDs of all elements named “book”},

obtained through the element index
2. B={IDs of all elements named “chapter”}

child axis join:
3. Result=

“child” join is one of the 13 different join operations

})parent(,|{ AxBxx ∈∈

chapterbook

child

15

http://www.ida.liu.se/~tompa/databaser/relalg-lecture/huge-join.gif
http://www.ida.liu.se/~tompa/databaser/relalg-lecture/huge-sigma.gif
http://www.ida.liu.se/~tompa/databaser/relalg-lecture/huge-sigma.gif

Performance Results
Single machine

Inserting an XML doc containing 47K nodes
(SIGMOD conference records) into the store: 75 sec
Read the whole doc: 0.2 sec
A simple XPath (selecting all papers of a certain
author): 1.2 sec (whole doc in cache)

Scalability experiment
of machines: 1-4 machines
Local cache size: 10K nodes
Document size: 10K / 40K XML nodes
Issue XPath queries from one machine, or from all
machines in parallel

16

Scalability Experiment Results

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

of machines

R
el

at
iv

e
th

ro
ug

hp
ut

small doc/1 query
machine
small doc/all query
machines

17

Scalability Experiment Results

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

of machines

R
el

at
iv

e
th

ro
ug

hp
ut small doc/1 query

machine
small doc/all query
machines
large doc/1 query
machine
large doc/all query
machines

18

Issues using Boxwood
Bulk-loading a B-tree is slow

Could support a “bulk-loading” mode where coarser-
grained locking & recovery is used

B-tree only supports fix-sized keys and values
The index implements a dictionary with variable-size
keys and values on top of B-tree
Could be generalized

Various performance issues
e.g. a flag set when opening the device file causing all
i/o to be serialized

19

Boxwood benefits
Chunk and B-tree abstracts data layout and
distribution
Data consistency easier

B-Trees already does proper locking
Others manually call global lock server

Recovery support easier
B-Tree operations already transactional
Provide logging and recovery code in other cases

Free data caching in B-tree and chunks
7K LOC, about 3K for XPath, reasonably easy to
write

20

In this project, we
devised a way of mapping XML to existing
Boxwood data structures
implemented data structures and algorithms to
efficiently access and query XML documents
demonstrated that Boxwood facilitates building
of scalable data structures.
made significant improvements to several
aspects of Boxwood performance

21

Thank you!

22

Status
Non-validating (no DTD or XML Schema
support) XML parser
XmlReader (.NET framework) interface for
sequential access to docs
Custom interface for random access
Subset of XPath 2.0

Supports: all path expressions axes, predicates, all
arithmetic and comparison expressions
Missing: variables, functions, control flow

23

Data vs. Document XML
Data XML

e.g. sales orders, stock quotes, scientific data
more structured, fine-grained (smallest unit of data
could be a number), order generally not significant

Document XML
e.g. books, emails, Word documents in XML
less regular, coarse-grained (smallest unit could be a
paragraph), lots of mixed content

24

	XML as a Boxwood Data Structure
	Overview
	Boxwood overview
	XML example
	XML as a tree
	Challenges in building a scalable XML store
	Outline
	Numbering Scheme
	Numbering nodes in the XML tree
	Mapping to Boxwood
	XML store data structures
	Outline
	XPath query processing
	Evaluating path expressions
	Join algorithms
	Performance Results
	Scalability Experiment Results
	Scalability Experiment Results
	Issues using Boxwood
	Boxwood benefits
	In this project, we
	Status
	Data vs. Document XML

