SafeDrive: Safe and Recoverable Extensions
Using Language-Based Techniques

Feng Zhou, Jeremy Condit, Zachary Anderson,
llya Bagrak, Rob Ennals, Matthew Harren,
George Necula, Eric Brewer

CS Division, UC Berkeley
and Intel Research Berkeley

http://i1vy.cs.berkeley.edu/safedrive/

The Problem

OSes and applications often run loadable extensions
— e.g. Linux kernel, Apache, Firefox

— Run In the same protection domain

Extensions are often buggier than hosts

— Device drivers cause a large percentage of Windows
crashes

— Xbox hacked due to memory bugs in games

SafeDrive detects and recovers from type-safety and
memory-safety errors in Linux device drivers

Approaches

Separate hardware protection domains: NooKks [Swift et all,
L4 [LeVasseur et al], X€N [Fraser et al]

— Relatively high overhead due to cross-domain calls,
system specific

Binary instrumentation: SF| [wahbe et al, Small/Seltzer]

— High overhead, coarse-grained

Static analysis + software guards: XFI [Erlingsson et al]

— Control flow safety

What can be done at the C language level?

— Add fined-grained type-safety, to extensions only
— A way to recover from failures

A Language-Based Approach
to Extension Safety

Light annotations in extension
code and host API

— Buffer bounds, non-null
pointers, nullterm strings,
tagged unions

Deputy src-to-src compiler
emits safety checks when
necessary

Key: compatible extension-host
binary interface

Runtime tracks resource usage
and restores system invariants
at fail time

Source

Cw/
< GCC ><:@

Driver SafeDrive
Mod |I"’ Runtime

& Recovery

1 P

Linux Kernel

Kernel Address Space

——————————————————————————

Deputy: Motivation

struct { e Common C code

unsigned Int len; * How to check memory safety?

Int * data; ,
e C pomters do not EXPress

F X3 extent of buffers (unlike Java)
for (i=0;i<x.len;i++) {

.. X.data[1] ..

Previous Approach: Fat Pointers

struct {
unsigned int len;
int * data;
int * data b;
int * data e;
} X;

for (1 = 0; 1 < x.len;

1++) {

Used in CCured and Cyclone

Compiler inserts extra
bounds variables

Changes memory layout

Cannot be applied modularly

IT (X.data+i<x.data b) abort();
IT (X.datat+i1>=x.data _e) abort();

.. X.data[i1] ..

Deputy Bounds Annotations

struct {

unsigned int len;

_ el

int * count(len) data;
} X

for(i = 0; i < x.len; i++) {

—F <O }H==xlen)abortl);

.. X.data[1] ..

Annotations use existing
bounds info in programs, or
constants

Compiler emits runtime
checks

No memory layout change
- Can be applied to one
extension a time

Many checks can be
optimized away

Deputy Features

Bounds: safe,count(n), bound(lo,ht)

Default: safe

Other annotations

Null terminated string/buffer
Tagged unions

Open arrays
Checks for printf() arguments

Automatic bounds variables for local variables
- reduced annotation burden

Deputy Guarantees

 Deputy guarantees type-safety If,

— Programmer correctly annotates globals and function
parameters used by the extension

— Deallocation does not create dangling pointers
— Trusted casts are correct

— External modules / trusted code establish and
preserve Deputy annotations

Failure Handling

Driver SafeDrive
Modul II"’ Runtime

& Recovery

1 P

Linux Kernel

Kernel Address Space

——————————————————————————

Everything runs inside the
same protection domain

After Deputy check failure:
could just halt

More useful: clean-up
extension and let host
continue

Assumption: restarts
should fix most transient
faillures

10

Update Tracking and Restarts

e Free resources and undo
state changes done by
driver

« Kernel API functions
“wrapped” to do update
tracking

— Compensations:
spin_lock(l) vs.
spin_unlock(l)

i |

= |
D”Ver —l Recovery :
Module !
|

Update :

Wrapgers = | Tracking :
:

|

|

|

|

|

|

|

|

Kernel Address Space

o After failure, undo updates
In LIFO order

e Then restart driver

Linux Kernel

11

Return Gracefully from Failure

Invariants:

e No driver code Is executed after failure

Kernel: Driver: Driver:
foo() { barl() { bar2() {

e Ve
| = ~)

code

} } }

12

Return Gracefully from Failure

Invariants:
e No driver code Is executed after failure

* No kernel function is forced to return early

Kernel: Driver: Kernel: Driver:
fool() { barl() { foo2() { bar2() {

I/I/IZ/é

| \ | -

} } } }

13

Discussion

« Compared to Nooks
— Significantly less interception = Much simpler overall

— Deputy does fine-grained per-allocation checks
- No separate heap/stack

— No help from virtual memory hardware

— Works for user-level applications and safe languages
« Compared to C++/Java exceptions

— Compensation does not contain any code from driver

— Only restores host state, not extension state

14

Implementation

Deputy compiler: 20K lines of OCaml
Kernel patch to 2.6.15.5: 1K lines
Kernel headers patch: 1.9K lines
Patch for 6 drivers in 4 categories

— Network: e1000, tg3

— USB: usb-storage

— Sound: intel8x0, emul0kl

— Video: nvidia

15

Evaluation: Recovery Rate

Inject random errors with compile-time injection: 5
errors from one of 7 categories each time

— Faults chosen following empirical studies
[Sullivan & Chillarege 91], [Christmansson & Chillarege 96]

— Scan overrun, loop fault, corrupt parameter, off-by-one,
flipped condition, missing call, missing assignment

Load buggy e1000 driver w/ and w/o SafeDrive

Exercise by downloading a 89MB file, verifying it and
unloading the driver

Then rerun with original driver

16

Recovery Rate Results

e 140 runs, 20 per fault category

SafeDrive off 44 crashes | 21 failures | 75 passes
Static error 10 0 3
SafeDrive on Runtime error 34 2 5
No problem
detected 0 19 of
Recovery successes 44 (100%) | 2 (100%) | 8 (100%)

o SafeDrive is effective at detecting and recovering from
crashing problems, and can detect some statically.

17

100000

10000

1000

100

Annotation Burden

17011

€1000

13270

tg3

13252

usb-storage

intel8x0

1%-4% of lines with Deputy annotations

@ Original LOC

O Deputy Annotations

B Recovery Wrappers
10126

11080

emulOkl

Recovery wrappers can be automatically generated

nvidia

18

Annotations Break-down

Lines Bounds Strings Tagged Trusted
Changed Unions Code
All 6 1544 379 83 2 390
drivers
Kernel 1866 187 260 8 140
headers

e Common reasons for trusted casts and trusted code

— Polymorphic private data, e.g. netdev->priv

— Small number of cases where buffer bounds are not available

— Code manipulating pointer values directly, e.g. PTR_ERR(X)

19

e1000 TCP recv
e1000 UDP recv
e1000 TCP send
e1000 UDP send
tg3 TCP recv

tg3 TCP send
usb-storage untar
emulOk aplay
intel8x0 aplay

nvidia xinit

-20

Performance

Relative %, SafeDrive vs. native

-10 0

10

20

@ Throughput

-17

OCPU

112

-1]1

-1.3

-1.1 49

113

123

114

——4

* Nooks (Linux 2.4): 1000 TCP recv: 46% (vs. 4%),
e1000 TCP send: 111% (vs. 12%)

20

Conclusion

SafeDrive does fine-grained memory safety checking for
extensions with low overhead and few code changes

A recovery scheme for in-process extensions via restarts

It is feasible to get much of the safety guarantee in type-
safe languages in extensions without abandoning
existing systems in C

Language technology makes extension isolation easier

http://i1vy.cs.berkeley.edu/safedrive
http://deputy.cs.berkeley.edu

21

22

How do you change bounds/tags

struct {
unsigned int len;

int * count(len) data;

} X;

1 x.data = NULL;

iIT (x.datal!=NULL && (A<O]|]A>len)) abort
o X.len = A;

IT (B<sizeof(int)*x.len) abort
3 X.data = malloc(B);

23

Related Work

Improving memory safety of C
— Safe C-like language: Cyclone [Vorrisett et al]
— Hybrid checking (non-modular): CCured [Necula et al]

— Type qualifiers for static checking: CQual [Foster et al,
Johnson/Wagner], Sparse [Torvalds]

Improving OS/extension reliability

— Hardware protection: Nooks [swift et al], L4 [LeVasseur et al], Xen
[Fraser et al]

— Binary instrumentation: SFI [wahbe et al, Small/Selizer], XFI [Erlingsson]
— Using Cyclone: OKE [Bos/Samwel]

— Static validation of APl usage: SLAM [Ball et al]

— Writing OS with safe language: Singularity [Patel et al]

24

More Deputy Features

Checking types of arguments in printf-like functions

Bounds for open arrays
Special support for memset(), memcpy()

Trusted casts for programmer to override the type
system

25

Recovery Rate Results

SafeDrive | Crashes Mal- Innocuous | Works
functions Errors
Off 44 21 n/a 75
On 0 19 8 113

e 140 runs, 20 per fault category
o SafeDrive prevented all 44 crashes with 100% recovery

rate

— 5 of 7 categories caused crashes

— All caused by memory-safety errors

26

Recovery Rate Results (2)

Detection Crashes | Mal-function | Innocuous Total
Static 10 0 3 13 (24%)
Dynamic 34 2 5 47 (76%)
Total 44 2 8 54

o 24% problems are detected statically,

Including 10 crashes

— e.g. wrong constant size for memcpy (), deref of
uninitialized ptr

27

— Wrappers are currently hand-written

— No session restoration for failed drivers

28

	SafeDrive: Safe and Recoverable Extensions Using Language-Based Techniques
	The Problem
	Approaches
	A Language-Based Approach �to Extension Safety
	Deputy: Motivation
	Previous Approach: Fat Pointers
	Deputy Bounds Annotations
	Deputy Features
	Deputy Guarantees
	Failure Handling
	Update Tracking and Restarts
	Return Gracefully from Failure
	Return Gracefully from Failure
	Discussion
	Implementation
	Evaluation: Recovery Rate
	Recovery Rate Results
	Annotation Burden
	Annotations Break-down
	Performance
	Conclusion
	How do you change bounds/tags
	Related Work
	More Deputy Features
	Recovery Rate Results
	Recovery Rate Results (2)

