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The Problem
• OSes and applications often run loadable extensions

– e.g. Linux kernel, Apache, Firefox

– Run in the same protection domain

• Extensions are often buggier than hosts

– Device drivers cause a large percentage of Windows 
crashes

– Xbox hacked due to memory bugs in games

• SafeDrive detects and recovers from type-safety and 
memory-safety errors in Linux device drivers
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Approaches
• Separate hardware protection domains: Nooks [Swift et al],

L4 [LeVasseur et al], Xen [Fraser et al]

– Relatively high overhead due to cross-domain calls, 
system specific

• Binary instrumentation: SFI [Wahbe et al, Small/Seltzer]

– High overhead, coarse-grained
• Static analysis + software guards: XFI [Erlingsson et al]

– Control flow safety
• What can be done at the C language level?

– Add fined-grained type-safety, to extensions only
– A way to recover from failures
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A Language-Based Approach 
to Extension Safety

• Light annotations in extension 
code and host API

– Buffer bounds, non-null 
pointers, nullterm strings, 
tagged unions

• Deputy src-to-src compiler 
emits safety checks when 
necessary

• Key: compatible extension-host 
binary interface

• Runtime tracks resource usage 
and restores system invariants 
at fail time
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Deputy: Motivation

struct {

unsigned int len;

int * data;

} x;

for (i=0;i<x.len;i++) {

… x.data[i] …

}

• Common C code
• How to check memory safety?
• C pointers do not express 

extent of buffers (unlike Java)
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Previous Approach: Fat Pointers

• Used in CCured and Cyclone

• Compiler inserts extra 
bounds variables

• Changes memory layout

• Cannot be applied modularly

struct {

unsigned int len;

int * data;

int * data_b;

int * data_e;

} x;

for (i = 0; i < x.len; i++) {

if (x.data+i<x.data_b) abort();

if (x.data+i>=x.data_e) abort();

… x.data[i] …

}
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Deputy Bounds Annotations
struct {

unsigned int len;

int * count(len) data;

} x;

for(i = 0; i < x.len; i++) {

if (i<0||i>=x.len) abort();

… x.data[i] …

}

• Annotations use existing 
bounds info in programs, or 
constants

• Compiler emits runtime 
checks

• No memory layout change
Can be applied to one 

extension a time

• Many checks can be 
optimized away
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Deputy Features
• Bounds: safe,count(n), bound(lo,hi)

– Default: safe

• Other annotations

– Null terminated string/buffer

– Tagged unions

– Open arrays
– Checks for printf() arguments

• Automatic bounds variables for local variables
reduced annotation burden
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Deputy Guarantees
• Deputy guarantees type-safety if,

– Programmer correctly annotates globals and function 
parameters used by the extension

– Deallocation does not create dangling pointers

– Trusted casts are correct

– External modules / trusted code establish and 
preserve Deputy annotations
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Failure Handling
• Everything runs inside the 

same protection domain

• After Deputy check failure: 
could just halt

• More useful: clean-up 
extension and let host 
continue

• Assumption: restarts 
should fix most transient 
failures
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Update Tracking and Restarts
• Free resources and undo 

state changes done by 
driver

• Kernel API functions 
“wrapped” to do update 
tracking
– Compensations: 
spin_lock(l) vs. 
spin_unlock(l)

• After failure, undo updates 
in LIFO order

• Then restart driver
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Return Gracefully from Failure
Invariants:

• No driver code is executed after failure

Kernel:
foo() {

}

Driver:
bar2() {

}

Driver:
bar1() {

}

Err 
code
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Return Gracefully from Failure
Invariants:

• No driver code is executed after failure

• No kernel function is forced to return early

Kernel:
foo1() {

}

Driver:
bar2() {

}

Driver:
bar1() {

}

Kernel:
foo2() {

}

lock()

unlock()



14

Discussion
• Compared to Nooks

– Significantly less interception Much simpler overall

– Deputy does fine-grained per-allocation checks 
No separate heap/stack

– No help from virtual memory hardware

– Works for user-level applications and safe languages

• Compared to C++/Java exceptions

– Compensation does not contain any code from driver

– Only restores host state, not extension state
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Implementation
• Deputy compiler: 20K lines of OCaml

• Kernel patch to 2.6.15.5: 1K lines

• Kernel headers patch: 1.9K lines

• Patch for 6 drivers in 4 categories

– Network: e1000, tg3
– USB: usb-storage
– Sound: intel8x0, emu10k1

– Video: nvidia
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Evaluation: Recovery Rate
• Inject random errors with compile-time injection: 5 

errors from one of 7 categories each time

– Faults chosen following empirical studies 
[Sullivan & Chillarege 91], [Christmansson & Chillarege 96]

– Scan overrun, loop fault, corrupt parameter, off-by-one, 
flipped condition, missing call, missing assignment

• Load buggy e1000 driver w/ and w/o SafeDrive

• Exercise by downloading a 89MB file, verifying it and 
unloading the driver

• Then rerun with original driver
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Recovery Rate Results

SafeDrive off 44 crashes 21 failures 75 passes

0 3

Runtime error 34 2 5SafeDrive on
No problem 

detected 0 19 67

Recovery successes 44 (100%) 2 (100%) 8 (100%)

10Static error

• 140 runs, 20 per fault category

• SafeDrive is effective at detecting and recovering from 
crashing problems, and can detect some statically.
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Annotation Burden

17011

260 270

13270

359

156

13252

136 118

2897

124
167

11080

441

10126

224

100

1000

10000

100000

e1000 tg3 usb-storage intel8x0 emu10k1 nvidia

Original LOC
Deputy Annotations
Recovery Wrappers

• 1%-4% of lines with Deputy annotations

• Recovery wrappers can be automatically generated 
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Annotations Break-down

Lines 
Changed

Bounds Strings Tagged 
Unions

Trusted 
Code

All 6 
drivers

1544

1866

379 83 2 390

Kernel 
headers

187 260 8 140

• Common reasons for trusted casts and trusted code
– Polymorphic private data, e.g. netdev->priv

– Small number of cases where buffer bounds are not available
– Code manipulating pointer values directly, e.g. PTR_ERR(x)
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Performance
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• Nooks (Linux 2.4):  e1000 TCP recv: 46% (vs. 4%), 
e1000 TCP send: 111% (vs. 12%)
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Conclusion
• SafeDrive does fine-grained memory safety checking for 

extensions with low overhead and few code changes

• A recovery scheme for in-process extensions via restarts

• It is feasible to get much of the safety guarantee in type-
safe languages in extensions without abandoning 
existing systems in C

• Language technology makes extension isolation easier

http://ivy.cs.berkeley.edu/safedrive

http://deputy.cs.berkeley.edu
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How do you change bounds/tags
struct {

unsigned int len;

int * count(len) data;

} x;

x.data = NULL;

if (x.data!=NULL && (A<0||A>len)) abort

x.len = A;

if (B<sizeof(int)*x.len) abort

x.data = malloc(B);

1

2

3
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Related Work
• Improving memory safety of C

– Safe C-like language: Cyclone [Morrisett et al]

– Hybrid checking (non-modular): CCured [Necula et al]

– Type qualifiers for static checking: CQual [Foster et al, 
Johnson/Wagner], Sparse [Torvalds]

• Improving OS/extension reliability
– Hardware protection: Nooks [Swift et al], L4 [LeVasseur et al], Xen

[Fraser et al]

– Binary instrumentation: SFI [Wahbe et al, Small/Seltzer], XFI [Erlingsson]

– Using Cyclone: OKE [Bos/Samwel]

– Static validation of API usage: SLAM [Ball et al]

– Writing OS with safe language: Singularity [Patel et al]
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More Deputy Features
• Checking types of arguments in printf-like functions

• Bounds for open arrays
• Special support for memset(), memcpy()

• Trusted casts for programmer to override the type 
system
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Recovery Rate Results
SafeDrive Crashes Mal-

functions
Innocuous 
Errors

21 n/a

819

44

0

Works

Off 75

On 113

• 140 runs, 20 per fault category

• SafeDrive prevented all 44 crashes with 100% recovery 
rate

– 5 of 7 categories caused crashes

– All caused by memory-safety errors
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Recovery Rate Results (2)
Detection Crashes Mal-function Innocuous Total

Static 10 0 3 13 (24%)

Dynamic 34 2 5 47 (76%)

Total 44 2 8 54

• 24% problems are detected statically, 
including 10 crashes
– e.g. wrong constant size for memcpy(), deref of 

uninitialized ptr
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– Wrappers are currently hand-written

– No session restoration for failed drivers
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