
SafeDrive: Safe and Recoverable Extensions
Using Language-Based Techniques

Feng Zhou, Jeremy Condit, Zachary Anderson,
Ilya Bagrak, Rob Ennals, Matthew Harren,

George Necula, Eric Brewer

CS Division, UC Berkeley
and Intel Research Berkeley

http://ivy.cs.berkeley.edu/safedrive/

2

The Problem
• OSes and applications often run loadable extensions

– e.g. Linux kernel, Apache, Firefox

– Run in the same protection domain

• Extensions are often buggier than hosts

– Device drivers cause a large percentage of Windows
crashes

– Xbox hacked due to memory bugs in games

• SafeDrive detects and recovers from type-safety and
memory-safety errors in Linux device drivers

3

Approaches
• Separate hardware protection domains: Nooks [Swift et al],

L4 [LeVasseur et al], Xen [Fraser et al]

– Relatively high overhead due to cross-domain calls,
system specific

• Binary instrumentation: SFI [Wahbe et al, Small/Seltzer]

– High overhead, coarse-grained
• Static analysis + software guards: XFI [Erlingsson et al]

– Control flow safety
• What can be done at the C language level?

– Add fined-grained type-safety, to extensions only
– A way to recover from failures

4

A Language-Based Approach
to Extension Safety

• Light annotations in extension
code and host API

– Buffer bounds, non-null
pointers, nullterm strings,
tagged unions

• Deputy src-to-src compiler
emits safety checks when
necessary

• Key: compatible extension-host
binary interface

• Runtime tracks resource usage
and restores system invariants
at fail time

Annot.
Source

Deputy

C w/
checks

GCC

Kernel Address Space

Driver
Module

SafeDrive
Runtime

& Recovery

Linux Kernel

5

Deputy: Motivation

struct {

unsigned int len;

int * data;

} x;

for (i=0;i<x.len;i++) {

… x.data[i] …

}

• Common C code
• How to check memory safety?
• C pointers do not express

extent of buffers (unlike Java)

6

Previous Approach: Fat Pointers

• Used in CCured and Cyclone

• Compiler inserts extra
bounds variables

• Changes memory layout

• Cannot be applied modularly

struct {

unsigned int len;

int * data;

int * data_b;

int * data_e;

} x;

for (i = 0; i < x.len; i++) {

if (x.data+i<x.data_b) abort();

if (x.data+i>=x.data_e) abort();

… x.data[i] …

}

7

Deputy Bounds Annotations
struct {

unsigned int len;

int * count(len) data;

} x;

for(i = 0; i < x.len; i++) {

if (i<0||i>=x.len) abort();

… x.data[i] …

}

• Annotations use existing
bounds info in programs, or
constants

• Compiler emits runtime
checks

• No memory layout change
Can be applied to one

extension a time

• Many checks can be
optimized away

8

Deputy Features
• Bounds: safe,count(n), bound(lo,hi)

– Default: safe

• Other annotations

– Null terminated string/buffer

– Tagged unions

– Open arrays
– Checks for printf() arguments

• Automatic bounds variables for local variables
reduced annotation burden

9

Deputy Guarantees
• Deputy guarantees type-safety if,

– Programmer correctly annotates globals and function
parameters used by the extension

– Deallocation does not create dangling pointers

– Trusted casts are correct

– External modules / trusted code establish and
preserve Deputy annotations

10

Failure Handling
• Everything runs inside the

same protection domain

• After Deputy check failure:
could just halt

• More useful: clean-up
extension and let host
continue

• Assumption: restarts
should fix most transient
failures

Annot.
Driver

Deputy

C w/
checks

GCC

Kernel Address Space

Driver
Module

SafeDrive
Runtime

& Recovery

Linux Kernel

11

Update Tracking and Restarts
• Free resources and undo

state changes done by
driver

• Kernel API functions
“wrapped” to do update
tracking
– Compensations:
spin_lock(l) vs.
spin_unlock(l)

• After failure, undo updates
in LIFO order

• Then restart driver

Annot.
Driver

Deputy

C w/
checks

GCC

Kernel Address Space

Driver
Module

Wrappers

Linux Kernel

Update
Tracking

Recovery

12

Return Gracefully from Failure
Invariants:

• No driver code is executed after failure

Kernel:
foo() {

}

Driver:
bar2() {

}

Driver:
bar1() {

}

Err
code

13

Return Gracefully from Failure
Invariants:

• No driver code is executed after failure

• No kernel function is forced to return early

Kernel:
foo1() {

}

Driver:
bar2() {

}

Driver:
bar1() {

}

Kernel:
foo2() {

}

lock()

unlock()

14

Discussion
• Compared to Nooks

– Significantly less interception Much simpler overall

– Deputy does fine-grained per-allocation checks
No separate heap/stack

– No help from virtual memory hardware

– Works for user-level applications and safe languages

• Compared to C++/Java exceptions

– Compensation does not contain any code from driver

– Only restores host state, not extension state

15

Implementation
• Deputy compiler: 20K lines of OCaml

• Kernel patch to 2.6.15.5: 1K lines

• Kernel headers patch: 1.9K lines

• Patch for 6 drivers in 4 categories

– Network: e1000, tg3
– USB: usb-storage
– Sound: intel8x0, emu10k1

– Video: nvidia

16

Evaluation: Recovery Rate
• Inject random errors with compile-time injection: 5

errors from one of 7 categories each time

– Faults chosen following empirical studies
[Sullivan & Chillarege 91], [Christmansson & Chillarege 96]

– Scan overrun, loop fault, corrupt parameter, off-by-one,
flipped condition, missing call, missing assignment

• Load buggy e1000 driver w/ and w/o SafeDrive

• Exercise by downloading a 89MB file, verifying it and
unloading the driver

• Then rerun with original driver

17

Recovery Rate Results

SafeDrive off 44 crashes 21 failures 75 passes

0 3

Runtime error 34 2 5SafeDrive on
No problem

detected 0 19 67

Recovery successes 44 (100%) 2 (100%) 8 (100%)

10Static error

• 140 runs, 20 per fault category

• SafeDrive is effective at detecting and recovering from
crashing problems, and can detect some statically.

18

Annotation Burden

17011

260 270

13270

359

156

13252

136 118

2897

124
167

11080

441

10126

224

100

1000

10000

100000

e1000 tg3 usb-storage intel8x0 emu10k1 nvidia

Original LOC
Deputy Annotations
Recovery Wrappers

• 1%-4% of lines with Deputy annotations

• Recovery wrappers can be automatically generated

19

Annotations Break-down

Lines
Changed

Bounds Strings Tagged
Unions

Trusted
Code

All 6
drivers

1544

1866

379 83 2 390

Kernel
headers

187 260 8 140

• Common reasons for trusted casts and trusted code
– Polymorphic private data, e.g. netdev->priv

– Small number of cases where buffer bounds are not available
– Code manipulating pointer values directly, e.g. PTR_ERR(x)

20

Performance

-17
4

12

9

8

13

23

6

14

4

0

0

-1.1

-1.3

0

0

0

0

-11

0

-20 -10 0 10 20
Relative %, SafeDrive vs. native

Throughput

CPU

e1000 TCP recv

e1000 UDP recv

e1000 TCP send

e1000 UDP send

tg3 TCP recv

tg3 TCP send

usb-storage untar

emu10k aplay

intel8x0 aplay

nvidia xinit

• Nooks (Linux 2.4): e1000 TCP recv: 46% (vs. 4%),
e1000 TCP send: 111% (vs. 12%)

21

Conclusion
• SafeDrive does fine-grained memory safety checking for

extensions with low overhead and few code changes

• A recovery scheme for in-process extensions via restarts

• It is feasible to get much of the safety guarantee in type-
safe languages in extensions without abandoning
existing systems in C

• Language technology makes extension isolation easier

http://ivy.cs.berkeley.edu/safedrive

http://deputy.cs.berkeley.edu

22

23

How do you change bounds/tags
struct {

unsigned int len;

int * count(len) data;

} x;

x.data = NULL;

if (x.data!=NULL && (A<0||A>len)) abort

x.len = A;

if (B<sizeof(int)*x.len) abort

x.data = malloc(B);

1

2

3

24

Related Work
• Improving memory safety of C

– Safe C-like language: Cyclone [Morrisett et al]

– Hybrid checking (non-modular): CCured [Necula et al]

– Type qualifiers for static checking: CQual [Foster et al,
Johnson/Wagner], Sparse [Torvalds]

• Improving OS/extension reliability
– Hardware protection: Nooks [Swift et al], L4 [LeVasseur et al], Xen

[Fraser et al]

– Binary instrumentation: SFI [Wahbe et al, Small/Seltzer], XFI [Erlingsson]

– Using Cyclone: OKE [Bos/Samwel]

– Static validation of API usage: SLAM [Ball et al]

– Writing OS with safe language: Singularity [Patel et al]

25

More Deputy Features
• Checking types of arguments in printf-like functions

• Bounds for open arrays
• Special support for memset(), memcpy()

• Trusted casts for programmer to override the type
system

26

Recovery Rate Results
SafeDrive Crashes Mal-

functions
Innocuous
Errors

21 n/a

819

44

0

Works

Off 75

On 113

• 140 runs, 20 per fault category

• SafeDrive prevented all 44 crashes with 100% recovery
rate

– 5 of 7 categories caused crashes

– All caused by memory-safety errors

27

Recovery Rate Results (2)
Detection Crashes Mal-function Innocuous Total

Static 10 0 3 13 (24%)

Dynamic 34 2 5 47 (76%)

Total 44 2 8 54

• 24% problems are detected statically,
including 10 crashes
– e.g. wrong constant size for memcpy(), deref of

uninitialized ptr

28

– Wrappers are currently hand-written

– No session restoration for failed drivers

	SafeDrive: Safe and Recoverable Extensions Using Language-Based Techniques
	The Problem
	Approaches
	A Language-Based Approach �to Extension Safety
	Deputy: Motivation
	Previous Approach: Fat Pointers
	Deputy Bounds Annotations
	Deputy Features
	Deputy Guarantees
	Failure Handling
	Update Tracking and Restarts
	Return Gracefully from Failure
	Return Gracefully from Failure
	Discussion
	Implementation
	Evaluation: Recovery Rate
	Recovery Rate Results
	Annotation Burden
	Annotations Break-down
	Performance
	Conclusion
	How do you change bounds/tags
	Related Work
	More Deputy Features
	Recovery Rate Results
	Recovery Rate Results (2)

