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Abstract

We present Adaptive Multi-Policy buffer caching (AMP), which uses multiple caching poli-
cies within one application, and adapts both which policies to use and their relative fraction
of the cache. AMP differentiates disk requests based on the program contexts that issue them,
and detects access pattern for each program context. This approach leads to detected patterns
more stable than previous approaches that do detection based on processes and files. Compared
to recent work, AMP is unique in that it employs a novel robust scheme for detecting looping
patterns in access streams, as well as a low-overhead randomized way of managing many cache
partitions. We show that AMP outperforms non-detection-based caching algorithms on a vari-
ety of workloads. For example, AMP reduces cache miss rate by up to 50% on a large database
workloads. Other applications show about 20%-30% reduction in cache miss rate. Compared to
other detection-based schemes, AMP detects access patterns more accurately in our experiment
with a series of synthesized workloads, and incurs up to 15% fewer misses for one of the appli-
cation traces. Experience with a Linux implementation is reported. Our prototype shortens the
run time of a large database workload by 9.6%.

1 Introduction

Modern applications rely on increasing amounts of data with widely varying access patterns. Al-
though traditional workstation OS workloads show temporal locality [1, 21], today’s large disks and
fast networks encourage both users and programs to create and save large amounts of data. Many
end user applications stream large amounts of data with little reuse; others have complex mixes of
sequential, hierarchical, and random accesses. Internet servers and their database backends often
handle data for millions of users, with high degrees of concurrency. Disk access patterns for these
modern applications deviate significantly from those of traditional workstation workloads.

Despite this increase in both I/O volume and complexity, disk access times continue to slow down
relative to processor and memory speeds; there is no Moore’s Law equivalent for disk access time.
Thus, optimizing disk access is central to achieving good performance in modern applications.

In this paper, we take a new approach to disk caching, which we call adaptive multi-policy caching
(AMP). Our goal is create a cache that adapts automatically not just to different applications, but
to different behaviors within one application. It is adaptive because it observes these behaviors
and adjusts as the workload changes, and it is multi-policy because it automatically uses the most
appropriate policy for each different part of the program. For example, when AMP detects looping



scans it will switch to MRU for that part of the application, while leaving the rest to a default
policy (such as LRU).

The traditional focus of caching has been to find one policy that works well for all applications.
This is well known to hurt some subset of applications, especially databases [24]. A possible
solution is to examine application-specific caching, which aims to find the best policy for a given
(small) set of applications, or even a single application. For example, the database community
has a wealth of work on tailoring disk caching to the specific activities within the database [5, 18].
OS researchers have proposed various schemes for allowing application control of physical memory
[9, 12]. Still others advocate per-application detection-based caches, to try to capture application-
specific requirements automatically [4, 14]. These solutions all have significant drawbacks, either
requiring too much intervention by the application programmer or simply not solving the problem
well for important cases.

The AMP approach differs in a few significant ways. First, we automatically identify the different
application program contexts that initiate each disk access. The program context from which
a request originates often correlates with the logical purpose of that request. For example, a
database may call read() both while scanning a table and traversing a tree, with clearly different
access patterns for each1. Second, for each context we use a novel, robust algorithm to detect the
access pattern and page reuse frequency. This allows us to pick the best policy for that context
automatically; in particular, without any input from the application programmer. Finally, we
automatically partition the cache space among contexts adaptively with a randomized method
based on the idea of equal marginal benefit for each context. Each of these three facets of our
approach required novel research, which we also present.

The results of our initial prototype are very promising. AMP is robust to changes in both workload
and cache size, and consistently delivers performance equal to or better than other policies tested.
In particular, AMP greatly outperforms ARC and LRU when the workload is much larger than the
cache.

2 Disk Caching Algorithms

The widening gap between processor and disk performance makes disk cache hit rates critical
to performance of I/O-bound applications. In this section we explore some of the fundamental
problems that face cache algorithm designers. We start by examining the problems with simplistic
replacement policies such as LRU, LFU, and MRU. Next, we discuss several ways in which recent
algorithms have addressed these problems. Finally, we present the key insights that motivate our
approach to disk cache management.

2.1 Simple Replacement Policies

Modern cache eviction policies are based on three simple strategies: least recently used (LRU), least
frequently used (LFU) and most recently used (MRU). The problem with all three is that they work
well for some workloads and poorly for others. For example, LRU works well when there is a high

1PCC [10] by Gniady et al. uses the same idea. AMP was developed concurrently with PCC.

2



degree of locality among requests but behaves badly if the workload includes large sequential scans.
In fact, if the scan size exceeds the cache size, LRU performs pessimally with a zero percent hit
rate. MRU has good performance for looping scans but poor performance when requests have high
locality. LFU is well tailored to workloads following the Independent Reference Model [6] (accesses
to each page are independent and have a fixed probability) such as random B-tree lookups. In
these workloads some pages are likely to be accessed more frequently than others. However LFU
performs poorly when the active set changes over time.

2.2 Recent Advances

Recent cache replacement algorithms avoid some of the problems of these simple strategies by
employing a hybrid approach. In general, this entails using information about the workload to either
overcome specific shortcomings in a basic algorithm or to modify the basic algorithm dynamically as
the workload changes. Researchers have also employed a number of schemes to differentiate among
applications or application subsystems, which may have different access patterns. We discuss several
strategies below, along with representative examples of each.

Balancing recency and frequency. Of the basic algorithms, LRU performs well on the widest
range of real workloads. Hence, many proposals start with LRU and include frequency information
to make it more resistant to scans. Examples of such algorithms are LRFU [15], LRU-K [19],
2Q [13], ARC [17] and CAR [2].

ARC and CAR have been shown empirically to be superior to the other variants in both cache
hit ratio and overhead. The basic idea of ARC/CAR is to partition the cache into two queues,
each using either LRU (ARC) or CLOCK (CAR) replacement. Pages accessed twice recently are
promoted from the first queue to the second. Therefore a one-pass scan will not evict all useful
pages from the cache. Intuitively the first queue holds recently used pages, while the second queue
holds frequently accessed pages. ARC/CAR adapts the sizes between two partitions using history
information.

Like LRU, however, these policies focus on the microscopic details of the workload. Hence they
cannot take advantage of larger trends in the workload or distinguish among different access patterns
at different program contexts. For example, although both ARC and CAR are scan-resistant, they
perform just as badly as LRU when faced with large, looping scans.

Application-specific policies. Another approach is to divide pages into logical domains, each
with its own caching policy. Application writers can then provide hints to the caching system to
determine which pages belong to each domain. Application-Controlled File Caching Policies [16]
and DBMIN [5] are two such systems. Transparent Informed Prefetching [22] did the analog for
prefetching. These all share the problem that they require significant effort on the part of the
programmer, and tend to be brittle as the program evolves.

Detection-based caching. The final category of methods we will focus on in this paper is
detection or classification based approaches, which explicitly try to identify specific patterns in I/O
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access streams and apply the most appropriate policies. The first design choice to make for a
detection based approach is the definition of an I/O stream to do detection on. UBM [14] does
per-file detection. DEAR is based on per-process detection. The recent PCC [10], as well as AMP,
does per-program context (referred to as program counter in [10]) detection.

One key design decision then is the pattern detection algorithm given an access stream, where AMP
differs from previous work. UBM watches for consecutive accesses to the file. If found, depending
on whether repeated accessed are observed, the stream is classified as either looping or sequential,
or ’other’ is not found. One obvious problem with this approach is that only loops that access
consecutive blocks will be detected, i.e. those accessing blocks i, i + 1, i + 2, ... DEAR sorts blocks
by last-access time, and observes whether the more recently accessed block gets accessed farther
in the future, indicating a loop. Although it detects non-consecutive loops, it’s more expensive
than UBM (involving keeping last access time for each block and sorting) and seems to be brittle
to fluctuations in block ordering, according to our experiments. PCC resorts to a simple counter-
based pattern detection algorithm. A stream is classified as looping if there are fewer non-repeating
(Seq blocks than repeating (Loop) blocks. Otherwise, it is classified as sequential if Seq is larger
than or equal to a threshold, or other otherwise. A major case when this fails as we see it is that it
is absolutely normal for temporally clustered streams to also have less non-repeating blocks than
repeating ones. These will be wrongly classified by PCC as looping.

AMP does program context based caching with a new access pattern detection algorithm. It
is a simple algorithm that detects consecutive or non-consecutive loops, is robust against small
reorderings and utilizes ordering information such that it distinguishes between loops and highly
clustered accesses (as opposed to PCC). Its overhead is small and can be made constant per access,
independent of working set or memory size.

AMP is also novel in the way it manages the cache partitions. Both UBM and PCC evict the block
with the least estimated “marginal gain”. Because the marginal gain estimation changes over time,
finding this block can be expensive. AMP, in contrast, uses a randomized eviction policy that is
much cheaper and robustly achieves similar effectiveness.

2.3 Our Approach

The fundamental hypotheses of our approach are that:

• the program context from which an I/O request originates is highly correlated with the access
pattern for that request, and

• the application’s function call stack at the time of the I/O can effectively identify the program
context.

Figure 1 illustrates the intuition behind these hypotheses. Suppose we have two fictitious applica-
tions running at the same time, foo db, a database, and bar httpd, a web server. The arrows in
the figure indicate function calls. The figure shows that a single read system call seen by the OS
can come from three initiating functions. The function names give an important clue as to what
pattern each access will have: btree scan() will do looping scans; btree tuple get() causes
probabilistic accesses, and accesses from process http req() will be temporally clustered (having
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       btree_scan() btree_tuple_get(key,...) process_http_req(...)

send_file(...)

read(fd,buf,pos,count)

foo_db bar_httpd

#1 #2 #3

get_page(table,index)

Figure 1: Call-stacks of two fictitious applications. Function names initiating requests suggest probable
access patterns.

good locality). Hence, the best policy for each will be MRU, LFU and LRU respectively. If we can
separate out the accesses from each of these functions, we have a good chance of detecting their
access patterns and applying the best policy for each independently.

How do we determine which user-level function initiates the I/O request? The naive approach of
simply using the user-level program counter fails because the function that “matters” may be way
up in the call stack. As Figure 1 shows, foo db issues all page requests in get page(), so knowing
that a request came from that function would not help.

In our solution, we do not try to find the one function that “conceptually” initiates the request, but
instead use the whole call stack to identify the program context. This of course captures the real
function. However, it may cause trouble for cases like recursive function calls, because each level
of recursion will create a new program context. Fortunately in each of the cases we have explored,
less than a dozen different call stacks dominate most I/O requests; that is, a few places issue most
of the requests, and we can ignore locations with a small number of requests.

Our previous work on Capriccio [26] used runtime program context statistics to make better schedul-
ing decisions. Program context IDs on most architectures can be obtained by simply following the
stack frame-pointers and hashing together each frame’s return address. We discuss practical issues
about obtaining the program context ID in Section 3.3.

Figure 2 illustrates the power of separating I/O requests by program context. The figure shows
the cumulative distribution of inter-reference gaps for major program contexts in our glimpse trace,
which is of using glimpseindex to index the Linux kernel source code. The inter-reference gap is
defined as the number of accesses to other pages that separate two accesses to the same page [23].
The vertical jumps in the graph indicate that a large number of pages at each program context
have similar inter-reference gaps. Pages from program context 1, 2 and 3 (lines on the right of the
figure) are referenced long after the first occurrence in most cases. The majority of pages from
program context 4 and 5 both have inter-reference gaps of 4000 and 2000, respectively. So it is like
that program contexts 4 and 5 are doing looping scans with those intervals.

All program contexts in this trace show a high degree of regularity in their block inter-reference gaps.
By contrast, the combined CDF line is much smoother and does not show a clear pattern. This
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Figure 2: Inter-Reference Gap cumulative distribution of major program contexts in trace glimpse.

shows that differentiating accesses by program context can lead to much more accurate predictions
of future accesses. This finding is analogous to the intuition behind the database caching algorithm
DBMIN [5]. For the database buffer manager, the high-level actions of the database correlate much
better with the overall access pattern than do the table or disk file.

As we shall show, our program context-based approach allows us to achieve the benefits of programmer-
supplied caching hints by extracting this information automatically from running applications,
requiring no programmer intervention at all. The result is a robust system that achieves simi-
lar or better performance to those with programmer hints, suffers lower risk of stale or incorrect
information, and performs better than previous general caching policies.

3 Design and Implementation

In this section we present the Adaptive Multi-Policy framework (AMP), a simple, practical and
general framework for program context-specific buffer caching. We also examine the in more detail
the problems of detecting access patterns and allocating cache space among partitions.

The major features of this framework are:

• Automatic: AMP achieves application-specific caching without programmer-provided hints.
This is a major advance from previous work.

• Two-level adaptation: The AMP framework employs both a high-level, relatively infrequent
adaptation of policies and a low-level, continuous adaptation of cache partitioning among
program contexts.

• Opportunistic optimization: The cache is organized such that when no obvious application-
specific optimization is possible, AMP performs identically to the default cache replacement

6



Default
Partition
(ARC)

Policy
Update

Specific Partition
(MRU 1)

Program Context

(MRU 2)

Program Context
Specific Partition

P1

P2

L1

L2

B1

B2

Statistics/
Access Trace

Access Pattern Detector

AMP Cache Manager

       ... ...       ... ...
AMP Cache Manager

Figure 3: Adaptive Multi-Policy framework.

policy for the system. When components of an application show access patterns that AMP
can exploit, AMP will perform better than the baseline policy, sometimes quite dramatically.

• Adaptable to application boundaries: AMP automatically discovers program contexts within
an application and retains this information across runs. Hence, AMP can be successfully
used on frequently-used, short-running processes (e.g. most Unix-style utilities), complicated
long-running servers, and collections of programs working in concert.

AMP is composed of two components, shown in Figure 3. The AMP Cache Manager subsumes the
original OS cache manager. It maintains a default cache partition that holds all “normal” blocks
not subject to optimization, using a default policy such as ARC or LRU.2 More importantly, it
maintains one partition for each optimized program context, using the appropriate policy for that
program context. It continuously adapts to the workload and adjusts the sizes of the partitions.

The AMP Cache Manager handles the low level details of deciding which pages to evict and
apportioning pages among the various cache partitions. The Access Pattern Detector periodically
runs AMPs access-pattern detection algorithm, using statistics and sampled access traces provided
by the cache manager. It then feeds the policy decisions it made based on detection results back

2From now on, we assume the default policy is ARC in our discussion. Using other default policies requires slight
changes to the size adaptation but the general approach applies.

7



to the cache manager. In general, the best interval between policy adaptations depends on the
workload. However, for long-running servers, this high-level adaptation should be viewed as a
“tuning” operation and thus run infrequently, e.g. once in several hours or even invoked manually
by the administrator.

AMP’s basic runtime algorithm is best illustrated through a simple example. When the OS starts
an application it has never run before, all of its blocks go into the default cache partition. As the
system collects statistics about the application’s program contexts, the access pattern detector may
decide that some of these contexts show exploitable access patterns and cause the cache manager
to allocate new cache partitions for them.

Significantly, AMP’s caching hints are workload-independent and hence can persist across applica-
tion runs. For example, the hints might indicate that /usr/bin/gcc does sequential scans (perhaps
reading source files) from several program contexts, identified by call-stack signatures s1, s2, . . . etc.
After this is detected, AMP can use this information immediately in subsequent runs without re-
quiring a detection phase. This applies until gcc itself is changed, when for example a new version
of it is installed.

The following subsections explore the details of various aspects of the AMP design.

3.1 Access-Pattern Detection

The AMP access pattern detector periodically assigns one of the following block access patterns to
each program context, in order to determine the policy to use for each context.

1. One-shot: one-time accesses.

2. Looping: repeated accesses to a series of blocks in the same or roughly the same order.
These blocks could be physically sequential or not.

3. Temporally clustered [1]: accesses characterized by the property that blocks accessed
recently are more likely to be accessed in the future.

4. Others: when none of the above apply.

Program contexts that always issue one-shot accesses are easy to identify. If none of the blocks
accessed by a context are accessed again after a long time, the detector assigns the one-shot pattern
to the context. We distinguish the other other patterns using a simple but robust scheme based on
average reference recency.

If a sequence of accesses is temporally clustered, then the more recently a block was accessed, the
more likely it is to be accessed again. In contrast, in a looping access the likely blocks to access
next are those accessed the least recently. Hence, one way to distinguish these access patterns is to
measure the recency of blocks accessed. The more recently accessed blocks the sequence accesses
on average, the more it is likely to be temporally clustered, and vice versa. Concretely, we measure
this reference recency of a block access by looking at the relative position of the last appearance of
the same block, in the list of all previously appeared blocks, ordered by their last reference time.
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Formally, for the i-th access in a sequence, we let Li be the list of all previously accessed blocks,
ordered from the oldest to the most recent by their last access time. Note that each block only
appears in Li at most once, at its position of last access. Thus if the access string is [4 2 3 1 2 3],
with time increasing to the right, then the last access is number 6 (for block 3), and L6 = {4, 3, 1, 2},
and L7 = {4, 1, 2, 3}, although we don’t yet know the seventh block. It is helpful to think of an
access to block B as moving B to the right of Li for the next access, analogous to a “move to front”
list algorithm. Let the length of the list be |Li|, and the position of the block of interest be pi, with
the oldest position being 0 and newest position being |Li| − 1.

We define the reference recency Ri of the i-th access as:

Ri =







pi/(|Li| − 1), |Li| > 1
0.5, |Li| = 1
⊥, undefined for first access

After we get the reference recency of each access, the average reference recency R̄ of the whole
string is simply the average of all defined Ri.

Example 1. Consider looping access string [1 2 3 1 2 3]. For the second access to block 1, i = 4
and L4 ={1 2 3}. Thus p4 = 0, since the last access to block 1 occurs in position 0 of L4. The
access has recency R4 = 0

3−1
= 0. For the next access to block 2, L5 = {2, 3, 1} and p5 = 0, and

thus R5 = 0. Similarly, R6 = 0 too, and in fact any pure looping pattern will have Ri = 0 and thus
R̄ = 0.

Example 2. Consider temporally clustered string [1 2 3 4 4 3 4 5 6 5 6]. The calculation of Ri is:

i Block Li pi Ri

1 1 empty ⊥ ⊥
2 2 1 ⊥ ⊥
3 3 1 2 ⊥ ⊥
4 4 1 2 3 ⊥ ⊥
5 4 1 2 3 4 3 1
6 3 1 2 3 4 2 0.67
7 4 1 2 4 3 2 0.67
8 5 1 2 3 4 ⊥ ⊥
9 6 1 2 3 4 5 ⊥ ⊥
10 5 1 2 3 4 5 6 4 0.8
11 6 1 2 3 4 6 5 4 0.8

R̄ = 0.79 (over all defined Ri)

In general, for pure loop sequences such as example 1, R̄=0. For highly temporally clustered
sequences R̄ is close to 1. It is also easy to see a uniformly random access sequence has R̄ = 0.5,
because for each access, the position of the last access is uniformly distributed over 0 to |Li| − 1.
In this sense, the average reference recency metric provides a measure of the correlation between
recency and future accesses. If R̄ > 0.5, recently accessed blocks are more likely than average to
be accessed in the near future. If R̄ < 0.5, recently accessed blocks are less likely than average to
be accessed. When R̄=0.5, overall recency is not correlated with future accesses.

The R̄ values can be estimated either continuously, updating results as each I/O request is issued,
or periodically, in a record-then-compute fashion. A continuous detector using exponential moving
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average of R values as R̄ instead of the definition above can respond faster to changes in workload.
In contrast, the periodical one can be easier to implement, because it could be done at user-level
and needs less interaction with the cache manager.

The pattern detector categorizes all contexts with R̄ < T as having looping patterns, where T is an
adjustable threshold. We use T = 0.4 in all our experiments. Contexts with looping accesses are
managed using MRU. AMP does not currently distinguish further between temporally clustered
and other patterns; these contexts are all managed using the default policy (currently ARC).

The R̄ metric is quite robust against small permutations of accesses. For example, the relative
position of a block changes very little if access to it is exchanged with the access before or after it.
Also, temporally clustered accesses having localized small loops will not be (incorrectly) classified
as looping.

Block sampling. It is easy to see that the cost of computing R̄ per access is O(|L|). This calcu-
lation could hence become rather expensive for PCs accessing a large number of blocks. Sampling
can be applied to reduce this cost. The sampling method we use is to hash the block number and
only consider the block when the hash is within a range. Note that by reducing the block count by
a factor of f , the execution time of the detection will roughly improve by f2, because both m and
n are reduced by f . This will have little effect on the detection result because each useful context
will access many blocks, and sampling does not change the access pattern.

We are also experimenting with an adaptive sampling method. For each access, one hashes the
block number to a 32-bit integer and only consider the block when the hash is smaller than a
threshold Q, initially Q0. Moreover, Q is halved whenever |L| grows over the limit NL and doubled
when |L| drops below NL/2 and Q > Q0. This adaptation effectively uses lower sampling rates
for higher volume PCs. Because the blocks samples are always a random subset of all blocks, the
detection result should be affected minimally.

3.2 Partitioned Cache Management and Low-overhead Adaptation

The Cache Manager manages the cache according to the access pattern of each program context.
One-shot blocks get dropped immediately after use. Looping program contexts will each get a
separate cache partition, running an MRU replacement policy. All program contexts with the
temporally clustered pattern or no detected patterns go to the default cache partition, running the
ARC replacement policy.

Now that blocks from different program contexts go into different cache partitions, we need a
scheme to allocate the limited cache blocks among them. We would like the allocation scheme to
have low overhead, adapt to fluctuations in workload and asymptotically approach optimal behavior.
Although globally optimal allocation may be impossible to achieve in some cases, we should at least
aim to reach a local optimum.

This type of partitioning is a well-studied resource allocation problem. Previous work used miss-
rate derivatives [25] and marginal-gains [22, 18, 14], which are similar ideas, as guides to allocation
of new buffers to partitions. The marginal-gain is defined as the expected number of extra hits
over unit time if we allocate another block to a cache partition. For a specific partition and stable
workload on that partition, it is a function of the current partition size. One application of the
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marginal-gain function is to use a greedy policy that always allocates a new buffer to the partition
with largest current marginal-gain.

However, AMP differs in the way marginal gains are used in cache eviction from previous work.
Both UBM and PCC evicts from the partition with the smallest estimated marginal gain when a
new free cache block is needed. This is the right thing to do when the marginal gain estimations
are accurate and timely. But it may lead to a large number of wrong evictions when the estimation
is inaccurate or overcorrecting when it is delayed. Both cases are often true with the estimations.
AMP tries to avoid these problems by doing the evicting probablistically. It lets the partitions
compete for cache blocks, in a way such that whenever a cache miss happens, we give the partition
one more block with a probability proportional to its marginal-gain. And this is done without
computing the marginal-gain literally. In this way, when a dynamic balance among the competing
partitions is achieved, all the partitions will have the same marginal-gain and no gain can be
achieved by reallocating one block from one partition to another. Therefore in this case we achieve
local optimum. This adaptation process goes on continuously over time and follows the changes in
workload.

Figure 4 shows the actual cache allocation and partition size adaptation scheme; it also defines
some of the values discussed below.

The ARC partition is expanded by one block whenever a hit in any of its ghost queues is observed.
For MRU partitions, the ci variable acts as a “coupon” counter. The partition is given a coupon
for each access to it. Later a new block is allocated to it, when it has enough coupons.

Let’s see why the equations in this scheme are correct and estimate marginal-gains, assuming stable
access patterns. Over a period of time t, suppose there are m hits in the ARC partition’s ghost
buffers. Under the policy above, the ARC partition will be enlarged m times. Also observe that m
hits in ghost buffers mean the measured marginal-gain is approximately:

MGARC =
m

(|B1| + |B2|)t

Then we have,
m = t(|B1| + |B2|) · MGARC (1)

For an MRU partition, the expected number of enlargements it gets according to the policy is
ni(|B1| + |B2|)/loop size, where ni is the number of accesses to the partition during time t. For a
stable looping pattern, we have ni = t·loop size

loop time
. Hence the number of enlargements, m′, can also be

written as

m′ =
t · loop size

loop time
·
|B1| + |B2|

loop size

=
t(|B1| + |B2|)

loop time

= t(|B1| + |B2|) · MGi (2)

The last step holds because MGi = 1/loop time.

From Equations 1 and 2, we see that the number of expansions for both the ARC partition and
MRU partitions are proportional to their marginal gains with the same coefficient. At the same
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Definitions and variables:

• L1: LRU queue of inactive in-core blocks in the ARC partition.

• L2: LRU queue of active in-core blocks.

• B1: Ghost queue for L1. Hits in B1 will result in expansion of L1.

• B2: Ghost queue for L2.

• loop sizei: Average number of blocks in each loop of accesses to partition i.

• loop timei: The average virtual system time duration of each loop for partition i.

• ci: an integer for each partition

On each access to partition i:
ci++

On cache miss of block p in partition i:
if (a free block available)

allocate it and return
if (i is ARC AND (p ∈ B1 OR p ∈ B2))

if (there is another non-empty partition)
evict from another non-empty partition randomly
return

else

do adaptation according to ARC policy
if (i is MRU && ci ≥ loop size

i
/(|B1| + |B2|)

AND there is another non-empty partition)
evict from another non-empty partition randomly
ci = ci − loop size

i
/(|B1| + |B2|)

return

if (p is non-empty)
evict a block from this partition (i)

else

evict from another non-empty partition randomly

Figure 4: Cache partition size adaptation.

time they are growing by taking blocks randomly from each other. Therefore the system moves
towards equal marginal-gain for each partition.

One issue is MRU “garbage collection”. Over time, although the access patterns of program contexts
are the same, the working set may gradually shift. In this case vanilla MRU will eventually fail
because it holds only old data. To solve this problem, we can periodically garbage collect long-
time unused blocks. We use the estimated loop time and standard deviation to schedule these
sweeps. Currently AMP sweeps every loop time +3loop time dev. Another issue is what to do with
blocks accessed by several different program contexts over time. They are simply moved among
the partitions and the partition sizes adjusted accordingly.

To summarize, the design of the AMP framework focuses on simplicity, low-overhead and adapt-
ability. As we shall see, the combination of relatively stable program context access patterns with
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AMP’s two-level adaptation yields high performance caching that is both practical and adaptive.
Moreover, AMP’s modular design can easily take advantage of new access pattern detection schemes
as they are discovered.

3.3 Linux Implementation

We have implemented AMP for Linux 2.6.8.1 and glibc compiled with frame-pointers (available in
most distributions). The program context is identified by walking the user-level stack by following
the framepointers and hashing together function return addresses. The prototype is stable enough to
run large applications like database benchmarks for hours and never crashed in our measurements.

The AMP cache manager is implemented by extending the Linux buffer cache, called page cache
because a page is the smallest unit of caching, instead of a disk block. We added a field to the
physical page structure to indicate the partition a page is in. Partition 0 is the original Linux
page cache partition, with a CLOCK-like replacement policy. Partition 1 is the one-shot partition,
where pages are freed whenever new pages are needed. Other partitions are MRU partitions. The
fact that buffer caching is tightly integrated into the virtual memory system in Linux poses some
challenge to the implementation. For example, a page in the cache could become a user page or a
disk I/O buffer page at any time. Therefore, not every page can be freed immediately when new
pages are needed. Also for performance reasons, Linux frees pages in batches instead of freeing
exactly the number needed. Care is taken to make sure that we follow the size adaptation rules
discussed above.

The pattern detector is implemented at user-level to ease development and thus operates period-
ically. It calls upon a kernel trace collector periodically to collect sampled disk I/O trace, along
with corresponding program context information. The kernel trace collector collects I/O events in
memory for a while and then feeds them to the pattern detector. After detecting the patterns, the
detector tells the kernel to allocate an MRU partition for each popular (in terms of unique block
count) MRU context, up to a fixed number, e.g 10. This is done because managing a single partition
for each MRU context is unnecessary and a waste of memory, because many of these partitions will
be empty almost all the time. An alternative way is to combine contexts into partitions, although
how to pick contexts to combine is an open question.

4 Simulation Study

4.1 Detection Scheme

We compared the AMP access detection scheme to DEAR[4] and PCC[10] (from Gniady et al.)
using simulation. Implementation of both schemes are done by us based on specification in [4] and
[10] respectively. All of these schemes work well for detecting pure looping patterns. Therefore we
focus our experiments on accesses with patterns but, more importantly, irregularities. We synthesize
several such access streams, as shown in Figure 5. Each stream accesses blocks numbering from
1-100. Text description of these streams, and the detection results of the algorithms are shown in
Table 1. Although we cannot claim these synthesized streams are representative of those from real
applications, it is safe to say that in a lot of cases, access streams from real applications can be
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Figure 5: Traces used to compare detection schemes and their hit rates with LRU and MRU

much more irregular than these. Hence, a robust detection scheme should be able to handle these
well.

The MRU and LRU hit rates in Figure 5 clearly indicate the best caching policy for each stream.
Table 1 shows that AMP detects the correct pattern each time.

DEAR detects the correct patterns except for (c) and (f). The DEAR scheme requires two param-
eters: detection interval and group size. We set the detection interval to half of the stream length,
so that DEAR does a single detection over the whole stream. Group size is set to 10. In general
DEAR is quite sensitive to changes in the stream. For example, both (b)(c) and (e)(f) are pairs of
similar streams. However DEAR succeeds for one but fails for the other in both cases. It is also
sensitive to the parameters. We tried many different group sizes and found 10 to work best overall.

As discussed in section 2.2, the PCC detection scheme tends to mix locality with looping. Here
it performs worse than DEAR and AMP, misclassifying 3 non-loop streams as loops. Actually it
detects the highly temporally clustered stream (a) as looping.
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Stream AMP (R̄) DEAR PCC Description
a other (0.755) other loop temporally clustered accesses moving through the file
b loop (0.001) loop loop pure loops
c loop (0.347) other loop loops with each block moved around randomly
d other (0.617) other loop temporally clustered accesses with localized small loops
e loop (0.008) loop loop loops in which a block is accessed again with prob. 0.6
f loop (0.010) other other same as (e) except probability is 0.5
g other (0.513) other loop uniformly random

Table 1: Access pattern detection results of streams in Figure 5. Correct results are in italic.

Name Total Pages Unique Pages

cscope 80650 26936
gnuplot 24167 8783

scan 640718 49558
kernelbuild 403530 98699

glimpse 307324 71868
osdb 9610 3112
dbt3 1035152 84890

Table 2: Traces used in our evaluation.

4.2 Caching Performance

In the following subsections, we use trace-driven simulation as our primary means of studying
caching performance of AMP. All traces are collected on a 2.4 GHz Pentium 4 Xeon PC server.3

The traces are collected using the kernel tracing functionality of the AMP implementation. The
kernel uses a compact in-memory event log during the tracing to avoid the interference that disk-
based logging would require.

One difficulty we encountered when building the simulator is that [10] does not contain a detailed
specification of PCC’s partitioned cache manager. Hence, we implemented the PCC pattern detec-
tion algorithm and used AMP’s cache management module. We believe this gives a fair evaluation
of the detection algorithm because it should be orthogonal to the cache management algorithm.
We call this hybrid scheme PCC*. Comparing the different partitioned cache management schemes
is future work.

We collected a variety of traces to show different types of application workloads. Table 2 summarizes
the accesses we observed. The Linux kernel manages buffer caches in pages. So we use pages as
units in our discussion below. The details of each trace are described below. One note is that
the dbt3 trace is sampled in 1/7 by hashing the page number, as discussed in Section 3.1, because
the original trace is too large (over 700M samples) for our simulator. Therefore its working set is
reduced to 1/7 of the original.
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Figure 6: cscope
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Figure 7: gnuplot
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Figure 8: scan - simple workload where each file in
a directory tree is read three times in whole.
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Figure 9: Linux kernel building. Most of this trace is
temporally-clustered. AMP exploits looping accesses
to program binaries and dynamic libraries.

4.2.1 Engineering Workloads

Figures 6 and 7 are results on two simple engineering workloads. The cscope trace records repeated
queries to a C symbol index of the Linux kernel source code. The index file is 106MB in size.
It also contains accesses to the matching source files. Because of the big looping accesses to the
index file, neither ARC nor LRU sees any improvement until the cache is large enough to hold the
whole index file. In contrast AMP performs very well. The gnuplot trace records the plotting of
several large data files. The largest file is scanned multiple times to extract several data series.
Therefore it exhibits both looping and sequential access patterns. Again, ARC and LRU perform
poorly while AMP’s miss rate decreases smoothly with cache size. In both traces, AMP and PCC*
perform identically.

The trace scan (Figure 8) shows a pathological case for PCC*. In this trace, a test program walks

3We are unable to use publicly available traces because they don’t include program context information.
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Figure 10: glimpse.

the Linux kernel source once and reads each file three times. These “small loops” are classified
as “loop” by PCC and MRU is used. AMP classifies these as “temporally clustered” because
more recent blocks get accessed. Figure 8 shows that PCC* performs much worse than all others,
including LRU.

Figure 9 compares different cache policies for building the Linux kernel. Since the accesses in
this trace show a high degree of locality and include many small loops, we expect that detection
based methods would not improve things by applying MRU. In reality, PCC* and DEAR show
degradation compared to LRU/ARC. However, PCC classifies some “small loop” contexts as loops
and loses hits. AMP detects these correctly and shows slight improvements over LRU and ARC.

Figure 10 shows results for indexing the Linux kernel source code tree using the glimpse full text
retrieval tool. It’s a relatively complex workload. AMP shows modest improvements over all other
policies in most cases and comes closer to OPT. DEAR shows no improvement over LRU at all.
PCC* perform similar to AMP, showing a bit of edge when cache size is large.

4.2.2 Database Workloads

Figure 11 compares two AMP variants with ARC and LRU on a database benchmark trace, OSDB
[20]. OSDB is based on AS3AP, the ANSI SQL Scalable and Portable Benchmark, as documented
in Chapter 5 of [11]. We used only the read-only “mixed-IR” portion of the test, because other parts
contain many transactional writes and would not benefit much from buffer caching improvements.
The part of interest uses a small (40MB) database and performs decision support queries. The
database under test is MySQL 4.0.18. ARC and LRU perform identically, getting no hits at all
until the cache is 1/3 the size of the working set. Both AMP variants perform dramatically better,
improving smoothly as the cache size increases.

The LRU variant of AMP uses LRU as the default policy in place of ARC. The close performance
of these two shows that AMP’s primary advantage comes from its program context analysis, rather
than the choice of default policy.

Figure 12 shows cache miss rates of AMP, ARC and LRU on the trace dbt3, which is much larger
than the previous trace. DBT3 [8] is an open-source implementation of the commercial TPC-H [7]
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Figure 11: osdb (Open Source Database Benchmark)
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Figure 12: dbt3 (a TPC-H benchmark implementa-
tion)

database benchmark. TPC-H models a decision support system. The main part of it a query stream
composed of 22 pre-written, complex queries in random order. The data set is large compared to
other experiments here. The whole database is about 4GB on disk. And each query is against a
large portion, if not all, of the database. The benchmark is run on PostgreSQL 7.4.2. We only ran
16 of the 22 available queries because the other 6 queries take too long to finish given the time we
have. Some queries taking too long (up to days) is a known issue discussed on the OSDL web site.

Figure 12 shows that AMP significantly out-performs ARC and LRU. The improvements are dra-
matic for several cache sizes. For example, for a cache size of 52016 pages, AMP achieves miss
rate of 25.9%, compared with ARC at 55.4% and LRU at 57.6%, a reduction of more than 50%.
In general, ARC and LRU perform poorly even if the working set is slightly larger than the cache
size, because a lot of looping accesses are in the workload. AMP’s hit rate increases smoothly with
cache size.

It’s worth pointing out that the fact that the PostgreSQL database relies on OS buffer caching
makes this experiment possible. Most commercial databases do their buffer management at user-
level by themselves. An in-kernel AMP implementation will not benefit them, although it would be
a very interesting experiment to compare AMP to hand-tuned, complex database buffer managers.

4.3 Partition Size Adaptation

We now take a closer look at how the partition-size adaptation scheme works. Figure 13 is the
history of size distributions between partitions in a run of the glimpse trace. MRU 1 (the top shaded
area on the graph) corresponds to the scans through all indexed files. MRU 2-4 are accesses to the
index files. ARC contains all other accesses. The jigsaws seen among MRU 2-4 are there because
the two contexts are hitting each other’s pages, not due to size adaptations. In this experiment,
the working set of MRU 1 is much larger than MRU 2-4. But because the loops in MRU 2-4
have much shorter intervals than MRU 1, MRU 2-4 have larger marginal gains. Thus the graph
shows that most cache space is allocated to the MRU 2-4. Over time the sum of MRU 2-4 is also
growing because of the coupon mechanism we employed. The index files gets larger and larger
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Figure 13: Partition size adaptation over time on glimpse. Each shaded area represents a partition. They
are from top to bottom: MRU1, MRU2, MRU3, MRU4 and ARC.

over time. The number of accesses for each lookup in the indexes becomes larger. Therefore page
access volumes of MRU 2-4 gets larger over time, which gives them more coupons and results in
enlargement of the partitions.

4.4 Cost and Practical Issues

Our main overhead is that of generating the program context ID by walking the stack. On most
machines this takes a few hundred cycles. Apart from that extra book-keeping, the cost per cache
hit is about the same as the building-block policy, ARC, and MRU. Extra cost per miss may
include that of adjusting partition sizes, which is also O(1) per page. If the stack-tracing overhead
becomes a problem, a possible optimization is to only calculate it when a cache miss occurs, because
each page in memory already has an attached program context ID. The downside is this may get
pages accessed by multiple program contexts wrong. But this makes the stack-tracing overhead
insignificant, since it will be dwarfed by the huge disk-access latency due to the cache miss.

Our high-level policy adaptation cost is minimal. As stated before, an important advantage of
using relatively stable program context access patterns is that the access pattern detector does not
need to be running all the time. This is much better than process-level adaptation, which requires
constant adaptation. For example, [4] mentioned that DEAR requires one adaptation per 1000
requests or so.

GCC recently improved their no-framepointer compilation support and systems like Linux are
gradually migrating to no-framepointer libraries and applications. Unwinding the call stack to
get a list of function return addresses will be more expensive for these systems, but still possible.
However, we can also use to compiler support or binary instrumentation to compute the identifier.
We already have a simple algorithm to select function call sites to instrument, by either a modified
compiler or the custom program loader, to compute the context identifier inexpensively. We plan
to evaluate the necessity and effectiveness of this method in the future.
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Figure 14: Glimpse on AMP and Linux page cache
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5 Measurement

In this section, we compare our AMP implementation against the default Linux page cache im-
plementation, by benchmarking real applications. We compared against Linux kernel 2.6.8.1, on
which the AMP implementation is also based, so that other parts of the system is identical. The
Linux page cache uses an improved CLOCK replacement policy [3]. There are two queues, inactive
and active. All new pages go into the inactive queue. Pages are promoted to the active queue if
they are accessed twice during their stay in the inactive queue. All replacement happens in the
inactive queue. The kernel also moves old pages from the active queue back to inactive from time
to time.

Our experiments are all done on a single-CPU 2.4 GHz Pentium 4 Xeon server with 1GB of memory.
In order to vary the amount of memory available to the system, we wrote a simple program to
allocate away the excess amount of memory and disable paging on them using the mlock() system
call before the experiment begins. The program itself also uses about 10 KB of memory, which is
negligible.

The first application we ran is glimpse. The setup is the same as in Section 4.2.1. The execution
times and number of blocks read from disk are shown in Figure 14. AMP shows significant perfor-
mance improvement over the Linux page cache. Run time is shortened by up to 13% and blocks
read from disk is reduced by up to 43%, both when memory size is 224 MB. Execution time is not
shortened as much as disk reads are saved because there are a lot of writes, which are the same for
both system.

We also run the DBT3 [8] database workload, in the configuration as we collected the dbt3 trace. We
tuned the database parameters following instructions from both the database manual and DBT3.
In the experiment we measure the execution time of each query and I/O activity of the system.
The query stream is ran three times in the same order for each setting and average taken.

Figure 15 compares the execution times of queries on AMP and plain Linux. AMP did better in 11
queries and worse in 5 (Q14, Q2, Q8, Q22 and Q12) (reason under investigation). AMP shortens
the total execution time of the query stream by 9.6%, from 1091 seconds to 986 seconds. Disk read
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traffic is reduced by 24.8% from 15.4 to 11.6 GB. Write traffic is also reduced by 6.5%, from 409
MB to 382 MB, probably due to lower cache contention.

6 Future Work

Our approach is complementary to innovations of building-block replacement policies. The individ-
ual caches for each program context will clearly benefit from using the most sophisticated caching
policy for the specific access pattern. Moreover, our use of application information allows us to use
specialized policies such as MRU that perform poorly in general. A number of additions can be
made to the basic AMP design presented here to use other existing and new policies. For example,
we plan to try LFU for probabilistic patterns like B-tree look-ups. It may also be interesting to
see the results of using other policies such as 2Q [13] as the default policy. Although ARC seems
to perform well in general, it may not be the best default policy for AMP, as the access pattern
of the default partition is different from general workloads, since we remove one-shot and looping
accesses (to other partitions).

We are also interested in exploring AMP’s behavior when there are a large number of disparate
application domains. We expect that aggregation of domains with similar access patterns will be
useful to reduce the management overhead in this case. The specifics of how this aggregation should
be done are an interesting research problem.

AMP makes it feasible to use narrow caching policies tailored to very specific situations. This may
yield better performance for certain types of workloads. For example, a server that serves static
content could improve overall latency by caching only the first portion of each file, and then using
prefetching for the remaining portions. AMP makes it feasible to automatically detect this type of
access pattern, and apply it only where it appears useful.

AMP’s program context analysis lends itself well to other types of disk-access optimizations. For
example, applications with a high degree of concurrency may be able to benefit from co-scheduling
tasks likely to access the same data. This would yield better cache performance by decreasing the
effective working set size at any one point.

Similarly, program context analysis could be used to make better prefetching decisions. For example
Linux attempts to deduce appropriate read-ahead sizes on a per-file basis. it is likely that the
accuracy of these predictions would be higher with program context information. In addition,
AMP remembers patterns across runs, which should also help prefetching. We have preliminary
results that suggest that program context analysis will be very effective at detecting and tuning
prefetching behavior.

7 Conclusion

We have presented AMP, an adaptive caching algorithm that deduces information about an appli-
cation’s structure and uses this to pick the best cache replacement policy for each program context.
Compared to recent and concurrent efforts, AMP is unique in that it uses a low-overhead and
robust access pattern detection algorithm, as well as randomized cache partition size adaptation.
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This potential is borne out in our experimental results. AMP minimally matches the performance
of ARC, among the best general-purpose caching algorithms, regularly beats it by 25%, and can
dramatically outperforms ARC for workloads that include looping scans (e.g. reduce miss rate by
more than 50% for dbt3 and even more for simpler application like cscope). For such workloads,
AMP’s hit rate increases steadily with the cache size, while ARC performs poorly unless a large
fraction of the working set fits in the cache. We expect this to yield very smooth results for real
applications that experience changes in working set size and workload frequency distribution.

AMP’s program context analysis allows it to adapt well to the needs of particular application
program contexts. Differentiating accesses by context is very effective at disambiguating overlapping
access patterns. This allows AMP to adapt well to the needs of complicated applications and
collections of simple applications. We achieve these benefits with low runtime overhead. Finally,
AMP essentially produces a high-quality application-specific cache without any input from the
programmer, and then adapts the policy automatically to changes in workload.
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